BCB Socket編程指南

轉至:http://www.cnblogs.com/nemolog/archive/2005/10/26/262234.html

 

什麼是 socket?
  你經常聽到人們談論着 “socket”,或許你還不知道它的確切含義。現在讓我告訴你:它是使用 標準Unix 文件描述符 (file descriptor) 和其它程序通訊的方式。什麼?你也許聽到一些Unix高手(hacker)這樣說過:“呀,Unix中的一切就是文件!”那個傢伙也許正在說到一個事實:Unix 程序在執行任何形式的 I/O 的時候,程序是在讀或者寫一個文件描述符。一個文件描述符只是一個和打開的文件相關聯的整數。但是(注意後面的話),這個文件可能是一個網絡連接,FIFO,管道,終端,磁盤上的文件或者什麼其它的東西。Unix 中所有的東西就是文件!所以,你想和Internet上別的程序通訊的時候,你將要使用到文件描述符。你必須理解剛纔的話。現在你腦海中或許冒出這樣的念頭:“那麼我從哪裏得到網絡通訊的文件描述符呢?”,這個問題無論如何我都要回答:你利用系統調用 socket(),它返回套接字描述符 (socket descriptor),然後你再通過它來進行send() 和 recv()調用。“但是...”,你可能有很大的疑惑,“如果它是個文件描述符,那麼爲什 麼不用一般調用read()和write()來進行套接字通訊?”簡單的答案是:“你可以使用!”。詳細的答案是:“你可以,但是使用send()和recv()讓你更好的控制數據傳輸。”存在這樣一個情況:在我們的世界上,有很多種套接字。有DARPA Internet 地址 (Internet 套接字),本地節點的路徑名 (Unix套接字),CCITT X.25地址 (你可以將X.25 套接字完全忽略)。也許在你的Unix 機器上還有其它的。我們在這裏只講第一種:Internet 套接字。
--------------------------------------------------------------------------------
Internet 套接字的兩種類型
  什麼意思?有兩種類型的Internet 套接字?是的。不,我在撒謊。其實還有很多,但是我可不想嚇着你。我們這裏只講兩種。除了這些, 我打算另外介紹的 "Raw Sockets" 也是非常強大的,很值得查閱。
那麼這兩種類型是什麼呢?一種是"Stream Sockets"(流格式),另外一種是"Datagram Sockets"(數據包格式)。我們以後談到它們的時候也會用到 "SOCK_STREAM" 和 "SOCK_DGRAM"。數據報套接字有時也叫“無連接套接字”(如果你確實要連接的時候可以用connect()。) 流式套接字是可靠的雙向通訊的數據流。如果你向套接字按順序輸出“1,2”,那麼它們將按順序“1,2”到達另一邊。它們是無錯誤的傳遞的,有自己的錯誤控制,在此不討論。
有什麼在使用流式套接字?你可能聽說過 telnet,不是嗎?它就使用流式套接字。你需要你所輸入的字符按順序到達,不是嗎?同樣,WWW瀏覽器使用的 HTTP 協議也使用它們來下載頁面。實際上,當你通過端口80 telnet 到一個 WWW 站點,然後輸入 “GET pagename” 的時候,你也可以得到 HTML 的內容。爲什麼流式套接字可以達到高質量的數據傳輸?這是因爲它使用了“傳輸控制協議 (The Transmission Control Protocol)”,也叫 “TCP” (請參考 RFC-793 獲得詳細資料。)TCP 控制你的數據按順序到達並且沒有錯
誤。你也許聽到 “TCP” 是因爲聽到過 “TCP/IP”。這裏的 IP 是指“Internet 協議”(請參考 RFC-791。) IP 只是處理 Internet 路由而已。
那麼數據報套接字呢?爲什麼它叫無連接呢?爲什麼它是不可靠的呢?有這樣的一些事實:如果你發送一個數據報,它可能會到達,它可能次序顛倒了。如果它到達,那麼在這個包的內部是無錯誤的。數據報也使用 IP 作路由,但是它不使用 TCP。它使用“用戶數據報協議 (User Datagram Protocol)”,也叫 “UDP” (請參考 RFC-768。)
爲什麼它們是無連接的呢?主要是因爲它並不象流式套接字那樣維持一個連接。你只要建立一個包,構造一個有目標信息的IP 頭,然後發出去。無需連接。它們通常使用於傳輸包-包信息。簡單的應用程序有:tftp, bootp等等。
你也許會想:“假如數據丟失了這些程序如何正常工作?”我的朋友,每個程序在 UDP 上有自己的協議。例如,tftp 協議每發出的一個被接受到包,收到者必須發回一個包來說“我收到了!” (一個“命令正確應答”也叫“ACK” 包)。如果在一定時間內(例如5秒),發送方沒有收到應答,它將重新發送,直到得到 ACK。這一ACK過程在實現 SOCK_DGRAM 應用程序的時候非常重要。
--------------------------------------------------------------------------------
網絡理論
  既然我剛纔提到了協議層,那麼現在是討論網絡究竟如何工作和一些 關於 SOCK_DGRAM 包是如何建立的例子。當然,你也可以跳過這一段, 如果你認爲已經熟悉的話。
現在是學習數據封裝 (Data Encapsulation) 的時候了!它非常非常重 要。它重要性重要到你在網絡課程學(圖1:數據封裝)習中無論如何也得也得掌握它。主要 的內容是:一個包,先是被第一個協議(在這裏是TFTP )在它的報頭(也許 是報尾)包裝(“封裝”),然後,整個數據(包括 TFTP 頭)被另外一個協議 (在這裏是 UDP )封裝,然後下一個( IP ),一直重複下去,直到硬件(物理) 層( 這裏是以太網 )。
當另外一臺機器接收到包,硬件先剝去以太網頭,內核剝去IP和UDP 頭,TFTP程序再剝去TFTP頭,最後得到數據。現在我們終於講到聲名狼藉的網絡分層模型 (Layered Network Model)。這種網絡模型在描述網絡系統上相對其它模型有很多優點。例如, 你可以寫一個套接字程序而不用關心數據的物理傳輸(串行口,以太網,連 接單元接口 (AUI) 還是其它介質),因爲底層的程序會爲你處理它們。實際 的網絡硬件和拓撲對於程序員來說是透明的。
不說其它廢話了,我現在列出整個層次模型。如果你要參加網絡考試, 可一定要記住:
應用層 (Application)
表示層 (Presentation)
會話層 (Session)
傳輸層(Transport)
網絡層(Network)
數據鏈路層(Data Link)
物理層(Physical)
物理層是硬件(串口,以太網等等)。應用層是和硬件層相隔最遠的--它 是用戶和網絡交互的地方。
這個模型如此通用,如果你想,你可以把它作爲修車指南。把它對應 到 Unix,結果是:
應用層(Application Layer) (telnet, ftp,等等)
傳輸層(Host-to-Host Transport Layer) (TCP, UDP)
Internet層(Internet Layer) (IP和路由)
網絡訪問層 (Network Access Layer) (網絡層,數據鏈路層和物理層)
現在,你可能看到這些層次如何協調來封裝原始的數據了。
看看建立一個簡單的數據包有多少工作?哎呀,你將不得不使用 "cat" 來建立數據包頭!這僅僅是個玩笑。對於流式套接字你要作的是 send() 發 送數據。對於數據報式套接字,你按照你選擇的方式封裝數據然後使用 sendto()。內核將爲你建立傳輸層和 Internet 層,硬件完成網絡訪問層。 這就是現代科技。
現在結束我們的網絡理論速成班。哦,忘記告訴你關於路由的事情了。 但是我不準備談它,如果你真的關心,那麼參考 IP RFC。
--------------------------------------------------------------------------------
結構體
  終於談到編程了。在這章,我將談到被套接字用到的各種數據類型。 因爲它們中的一些內容很重要了。
首先是簡單的一個:socket描述符。它是下面的類型:
int
僅僅是一個常見的 int。
從現在起,事情變得不可思議了,而你所需做的就是繼續看下去。注 意這樣的事實:有兩種字節排列順序:重要的字節 (有時叫 "octet",即八 位位組) 在前面,或者不重要的字節在前面。前一種叫“網絡字節順序 (Network Byte Order)”。有些機器在內部是按照這個順序儲存數據,而另外 一些則不然。當我說某數據必須按照 NBO 順序,那麼你要調用函數(例如 htons() )來將它從本機字節順序 (Host Byte Order) 轉換過來。如果我沒有 提到 NBO, 那麼就讓它保持本機字節順序。
我的第一個結構(在這個技術手冊TM中)--struct sockaddr.。這個結構 爲許多類型的套接字儲存套接字地址信息:
struct sockaddr {
   unsigned short sa_family; /* 地址家族, AF_xxx */
   char sa_data[14]; /*14字節協議地址*/
   };
sa_family 能夠是各種各樣的類型,但是在這篇文章中都是 "AF_INET"。 sa_data包含套接字中的目標地址和端口信息。這好像有點 不明智。
爲了處理struct sockaddr,程序員創造了一個並列的結構: struct sockaddr_in ("in" 代表 "Internet"。)
struct sockaddr_in {
   short int sin_family; /* 通信類型 */
   unsigned short int sin_port; /* 端口 */
   struct in_addr sin_addr; /* Internet 地址 */
   unsigned char sin_zero[8]; /* 與sockaddr結構的長度相同*/
   };
用這個數據結構可以輕鬆處理套接字地址的基本元素。注意 sin_zero (它被加入到這個結構,並且長度和 struct sockaddr 一樣) 應該使用函數 bzero() 或 memset() 來全部置零。 同時,這一重要的字節,一個指向 sockaddr_in結構體的指針也可以被指向結構體sockaddr並且代替它。這 樣的話即使 socket() 想要的是 struct sockaddr *,你仍然可以使用 struct sockaddr_in,並且在最後轉換。同時,注意 sin_family 和 struct sockaddr 中的 sa_family 一致並能夠設置爲 "AF_INET"。最後,sin_port和 sin_addr 必須是網絡字節順序 (Network Byte Order)!
你也許會反對道:"但是,怎麼讓整個數據結構 struct in_addr sin_addr 按照網絡字節順序呢?" 要知道這個問題的答案,我們就要仔細的看一看這 個數據結構: struct in_addr, 有這樣一個聯合 (unions):
/* Internet 地址 (一個與歷史有關的結構) */
   struct in_addr {
   unsigned long s_addr;
   };
它曾經是個最壞的聯合,但是現在那些日子過去了。如果你聲明 "ina" 是數據結構 struct sockaddr_in 的實例,那麼 "ina.sin_addr.s_addr" 就儲 存4字節的 IP 地址(使用網絡字節順序)。如果你不幸的系統使用的還是恐 怖的聯合 struct in_addr ,你還是可以放心4字節的 IP 地址並且和上面 我說的一樣(這是因爲使用了“#define”。)
--------------------------------------------------------------------------------
本機轉換
  我們現在到了新的章節。我們曾經講了很多網絡到本機字節順序的轉 換,現在可以實踐了!
你能夠轉換兩種類型: short (兩個字節)和 long (四個字節)。這個函 數對於變量類型 unsigned 也適用。假設你想將 short 從本機字節順序轉 換爲網絡字節順序。用 "h" 表示 "本機 (host)",接着是 "to",然後用 "n" 表 示 "網絡 (network)",最後用 "s" 表示 "short": h-to-n-s, 或者 htons() ("Host to Network Short")。
太簡單了...
如果不是太傻的話,你一定想到了由"n","h","s",和 "l"形成的正確 組合,例如這裏肯定沒有stolh() ("Short to Long Host") 函數,不僅在這裏 沒有,所有場合都沒有。但是這裏有:
htons()--"Host to Network Short"
  htonl()--"Host to Network Long"
  ntohs()--"Network to Host Short"
  ntohl()--"Network to Host Long"
現在,你可能想你已經知道它們了。你也可能想:“如果我想改變 char 的順序要怎麼辦呢?” 但是你也許馬上就想到,“用不着考慮的”。你也許 會想到:我的 68000 機器已經使用了網絡字節順序,我沒有必要去調用 htonl() 轉換 IP 地址。你可能是對的,但是當你移植你的程序到別的機器 上的時候,你的程序將失敗。可移植性!這裏是 Unix 世界!記住:在你 將數據放到網絡上的時候,確信它們是網絡字節順序的。
最後一點:爲什麼在數據結構 struct sockaddr_in 中, sin_addr 和 sin_port 需要轉換爲網絡字節順序,而sin_family 需不需要呢? 答案是: sin_addr 和 sin_port 分別封裝在包的 IP 和 UDP 層。因此,它們必須要 是網絡字節順序。但是 sin_family 域只是被內核 (kernel) 使用來決定在數 據結構中包含什麼類型的地址,所以它必須是本機字節順序。同時, sin_family 沒有發送到網絡上,它們可以是本機字節順序。
--------------------------------------------------------------------------------
IP 地址和如何處理它們
現在我們很幸運,因爲我們有很多的函數來方便地操作 IP 地址。沒有 必要用手工計算它們,也沒有必要用"<<"操作來儲存成長整字型。 首先,假設你已經有了一個sockaddr_in結構體ina,你有一個IP地 址"132.241.5.10"要儲存在其中,你就要用到函數inet_addr(),將IP地址從 點數格式轉換成無符號長整型。使用方法如下:
ina.sin_addr.s_addr = inet_addr("132.241.5.10");
注意,inet_addr()返回的地址已經是網絡字節格式,所以你無需再調用 函數htonl()。
我們現在發現上面的代碼片斷不是十分完整的,因爲它沒有錯誤檢查。 顯而易見,當inet_addr()發生錯誤時返回-1。記住這些二進制數字?(無符 號數)-1僅僅和IP地址255.255.255.255相符合!這可是廣播地址!大錯特 錯!記住要先進行錯誤檢查。
好了,現在你可以將IP地址轉換成長整型了。有沒有其相反的方法呢? 它可以將一個in_addr結構體輸出成點數格式?這樣的話,你就要用到函數 inet_ntoa()("ntoa"的含義是"network to ascii"),就像這樣:
printf("%s",inet_ntoa(ina.sin_addr));
它將輸出IP地址。需要注意的是inet_ntoa()將結構體in-addr作爲一 個參數,不是長整形。同樣需要注意的是它返回的是一個指向一個字符的 指針。它是一個由inet_ntoa()控制的靜態的固定的指針,所以每次調用 inet_ntoa(),它就將覆蓋上次調用時所得的IP地址。例如:
char *a1, *a2;
.
.
a1 = inet_ntoa(ina1.sin_addr); /* 這是198.92.129.1 */
a2 = inet_ntoa(ina2.sin_addr); /* 這是132.241.5.10 */
printf("address 1: %s\n",a1);
printf("address 2: %s\n",a2);
輸出如下:
address 1: 132.241.5.10
address 2: 132.241.5.10
假如你需要保存這個IP地址,使用strcopy()函數來指向你自己的字符 指針。
上面就是關於這個主題的介紹。稍後,你將學習將一個類 似"wintehouse.gov"的字符串轉換成它所對應的IP地址(查閱域名服務,稍 後)。
--------------------------------------------------------------------------------
socket()函數
我想我不能再不提這個了-下面我將討論一下socket()系統調用。
下面是詳細介紹:
#include <sys/types.h>
#include <sys/socket.h>
int socket(int domain, int type, int protocol);
但是它們的參數是什麼? 首先,domain 應該設置成 "AF_INET",就 象上面的數據結構struct sockaddr_in 中一樣。然後,參數 type 告訴內核 是 SOCK_STREAM 類型還是 SOCK_DGRAM 類型。最後,把 protocol 設置爲 "0"。(注意:有很多種 domain、type,我不可能一一列出了,請看 socket() 的 man幫助。當然,還有一個"更好"的方式去得到 protocol。同 時請查閱 getprotobyname() 的 man 幫助。)
socket() 只是返回你以後在系統調用種可能用到的 socket 描述符,或 者在錯誤的時候返回-1。全局變量 errno 中將儲存返回的錯誤值。(請參考 perror() 的 man 幫助。)
--------------------------------------------------------------------------------
bind()函數
  一旦你有一個套接字,你可能要將套接字和機器上的一定的端口關聯 起來。(如果你想用listen()來偵聽一定端口的數據,這是必要一步--MUD 告 訴你說用命令 "telnet x.y.z 6969"。)如果你只想用 connect(),那麼這個步 驟沒有必要。但是無論如何,請繼續讀下去。
這裏是系統調用 bind() 的大概:
#include <sys/types.h>
#include <sys/socket.h>
int bind(int sockfd, struct sockaddr *my_addr, int addrlen);
sockfd 是調用 socket 返回的文件描述符。my_addr 是指向數據結構 struct sockaddr 的指針,它保存你的地址(即端口和 IP 地址) 信息。 addrlen 設置爲 sizeof(struct sockaddr)。
簡單得很不是嗎? 再看看例子:
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#define MYPORT 3490
main()
   {
   int sockfd;
   struct sockaddr_in my_addr;
sockfd = socket(AF_INET, SOCK_STREAM, 0); /*需要錯誤檢查 */
my_addr.sin_family = AF_INET; /* host byte order */
   my_addr.sin_port = htons(MYPORT); /* short, network byte order */
   my_addr.sin_addr.s_addr = inet_addr("132.241.5.10");
   bzero(&(my_addr.sin_zero),; /* zero the rest of the struct */
/* don't forget your error checking for bind(): */
   bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr));
   .
   .
   .
這裏也有要注意的幾件事情。my_addr.sin_port 是網絡字節順序, my_addr.sin_addr.s_addr 也是的。另外要注意到的事情是因系統的不同, 包含的頭文件也不盡相同,請查閱本地的 man 幫助文件。
在 bind() 主題中最後要說的話是,在處理自己的 IP 地址和/或端口的 時候,有些工作是可以自動處理的。
my_addr.sin_port = 0; /* 隨機選擇一個沒有使用的端口 */
  my_addr.sin_addr.s_addr = INADDR_ANY; /* 使用自己的IP地址 */
通過將0賦給 my_addr.sin_port,你告訴 bind() 自己選擇合適的端 口。同樣,將 my_addr.sin_addr.s_addr 設置爲 INADDR_ANY,你告訴 它自動填上它所運行的機器的 IP 地址。
如果你一向小心謹慎,那麼你可能注意到我沒有將 INADDR_ANY 轉 換爲網絡字節順序!這是因爲我知道內部的東西:INADDR_ANY 實際上就 是 0!即使你改變字節的順序,0依然是0。但是完美主義者說應該處處一 致,INADDR_ANY或許是12呢?你的代碼就不能工作了,那麼就看下面 的代碼:
my_addr.sin_port = htons(0); /* 隨機選擇一個沒有使用的端口 */
my_addr.sin_addr.s_addr = htonl(INADDR_ANY);/* 使用自己的IP地址 */
你或許不相信,上面的代碼將可以隨便移植。我只是想指出,既然你 所遇到的程序不會都運行使用htonl的INADDR_ANY。
bind() 在錯誤的時候依然是返回-1,並且設置全局錯誤變量errno。
在你調用 bind() 的時候,你要小心的另一件事情是:不要採用小於 1024的端口號。所有小於1024的端口號都被系統保留!你可以選擇從1024 到65535的端口(如果它們沒有被別的程序使用的話)。
你要注意的另外一件小事是:有時候你根本不需要調用它。如果你使 用 connect() 來和遠程機器進行通訊,你不需要關心你的本地端口號(就象 你在使用 telnet 的時候),你只要簡單的調用 connect() 就可以了,它會檢 查套接字是否綁定端口,如果沒有,它會自己綁定一個沒有使用的本地端口。
--------------------------------------------------------------------------------
connect()程序
  現在我們假設你是個 telnet 程序。你的用戶命令你得到套接字的文件 描述符。你聽從命令調用了socket()。下一步,你的用戶告訴你通過端口 23(標準 telnet 端口)連接到"132.241.5.10"。你該怎麼做呢? 幸運的是,你正在閱讀 connect()--如何連接到遠程主機這一章。你可 不想讓你的用戶失望。
connect() 系統調用是這樣的:
#include <sys/types.h>
#include <sys/socket.h>
int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);
sockfd 是系統調用 socket() 返回的套接字文件描述符。serv_addr 是 保存着目的地端口和 IP 地址的數據結構 struct sockaddr。addrlen 設置 爲 sizeof(struct sockaddr)。
想知道得更多嗎?讓我們來看個例子:
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#define DEST_IP "132.241.5.10"
  #define DEST_PORT 23
main()
   {
int sockfd;
struct sockaddr_in dest_addr; /* 目的地址*/
sockfd = socket(AF_INET, SOCK_STREAM, 0); /* 錯誤檢查 */
dest_addr.sin_family = AF_INET; /* host byte order */
dest_addr.sin_port = htons(DEST_PORT); /* short, network byte order */
dest_addr.sin_addr.s_addr = inet_addr(DEST_IP);
bzero(&(dest_addr.sin_zero),; /* zero the rest of the struct */
/* don't forget to error check the connect()! */
connect(sockfd, (struct sockaddr *)&dest_addr, sizeof(struct sockaddr));
   .
   .
   .
  再一次,你應該檢查 connect() 的返回值--它在錯誤的時候返回-1,並 設置全局錯誤變量 errno。
同時,你可能看到,我沒有調用 bind()。因爲我不在乎本地的端口號。 我只關心我要去那。內核將爲我選擇一個合適的端口號,而我們所連接的 地方也自動地獲得這些信息。一切都不用擔心。
--------------------------------------------------------------------------------
listen()函數
  是換換內容得時候了。假如你不希望與遠程的一個地址相連,或者說, 僅僅是將它踢開,那你就需要等待接入請求並且用各種方法處理它們。處 理過程分兩步:首先,你聽--listen(),然後,你接受--accept() (請看下面的 內容)。
除了要一點解釋外,系統調用 listen 也相當簡單。
int listen(int sockfd, int backlog);
sockfd 是調用 socket() 返回的套接字文件描述符。backlog 是在進入 隊列中允許的連接數目。什麼意思呢? 進入的連接是在隊列中一直等待直 到你接受 (accept() 請看下面的文章)連接。它們的數目限制於隊列的允許。 大多數系統的允許數目是20,你也可以設置爲5到10。
和別的函數一樣,在發生錯誤的時候返回-1,並設置全局錯誤變量 errno。
你可能想象到了,在你調用 listen() 前你或者要調用 bind() 或者讓內 核隨便選擇一個端口。如果你想偵聽進入的連接,那麼系統調用的順序可 能是這樣的:
socket();
  bind();
listen();
  /* accept() 應該在這 */
因爲它相當的明瞭,我將在這裏不給出例子了。(在 accept() 那一章的 代碼將更加完全。)真正麻煩的部分在 accept()。
--------------------------------------------------------------------------------
accept()函數
  準備好了,系統調用 accept() 會有點古怪的地方的!你可以想象發生 這樣的事情:有人從很遠的地方通過一個你在偵聽 (listen()) 的端口連接 (connect()) 到你的機器。它的連接將加入到等待接受 (accept()) 的隊列 中。你調用 accept() 告訴它你有空閒的連接。它將返回一個新的套接字文 件描述符!這樣你就有兩個套接字了,原來的一個還在偵聽你的那個端口, 新的在準備發送 (send()) 和接收 ( recv()) 數據。這就是這個過程!
函數是這樣定義的:
#include <sys/socket.h>
int accept(int sockfd, void *addr, int *addrlen);
sockfd 相當簡單,是和 listen() 中一樣的套接字描述符。addr 是個指 向局部的數據結構 sockaddr_in 的指針。這是要求接入的信息所要去的地 方(你可以測定那個地址在那個端口呼叫你)。在它的地址傳遞給 accept 之 前,addrlen 是個局部的整形變量,設置爲 sizeof(struct sockaddr_in)。 accept 將不會將多餘的字節給 addr。如果你放入的少些,那麼它會通過改
變 addrlen 的值反映出來。
同樣,在錯誤時返回-1,並設置全局錯誤變量 errno。
現在是你應該熟悉的代碼片段。
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#define MYPORT 3490 /*用戶接入端口*/
#define BACKLOG 10 /* 多少等待連接控制*/
main()
   {
  int sockfd, new_fd; /* listen on sock_fd, new connection on new_fd */
  struct sockaddr_in my_addr; /* 地址信息 */
  struct sockaddr_in their_addr; /* connector's address information */
  int sin_size;
sockfd = socket(AF_INET, SOCK_STREAM, 0); /* 錯誤檢查*/
my_addr.sin_family = AF_INET; /* host byte order */
  my_addr.sin_port = htons(MYPORT); /* short, network byte order */
  my_addr.sin_addr.s_addr = INADDR_ANY; /* auto-fill with my IP */
  bzero(&(my_addr.sin_zero),; /* zero the rest of the struct */
/* don't forget your error checking for these calls: */
  bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr));
listen(sockfd, BACKLOG);
sin_size = sizeof(struct sockaddr_in);
  new_fd = accept(sockfd, &their_addr, &sin_size);
   .
   .
   .
注意,在系統調用 send() 和 recv() 中你應該使用新的套接字描述符 new_fd。如果你只想讓一個連接進來,那麼你可以使用 close() 去關閉原 來的文件描述符 sockfd 來避免同一個端口更多的連接。
--------------------------------------------------------------------------------
send() and recv()函數
  這兩個函數用於流式套接字或者數據報套接字的通訊。如果你喜歡使 用無連接的數據報套接字,你應該看一看下面關於sendto() 和 recvfrom() 的章節。
send() 是這樣的:
int send(int sockfd, const void *msg, int len, int flags);
sockfd 是你想發送數據的套接字描述符(或者是調用 socket() 或者是 accept() 返回的。)msg 是指向你想發送的數據的指針。len 是數據的長度。 把 flags 設置爲 0 就可以了。(詳細的資料請看 send() 的 man page)。
這裏是一些可能的例子:
char *msg = "Beej was here!";
  int len, bytes_sent;
  .
  .
  len = strlen(msg);
  bytes_sent = send(sockfd, msg, len, 0);
  .
  .
  .
send() 返回實際發送的數據的字節數--它可能小於你要求發送的數 目! 注意,有時候你告訴它要發送一堆數據可是它不能處理成功。它只是 發送它可能發送的數據,然後希望你能夠發送其它的數據。記住,如果 send() 返回的數據和 len 不匹配,你就應該發送其它的數據。但是這裏也 有個好消息:如果你要發送的包很小(小於大約 1K),它可能處理讓數據一 次發送完。最後要說得就是,它在錯誤的時候返回-1,並設置 errno。
recv() 函數很相似:
int recv(int sockfd, void *buf, int len, unsigned int flags);
sockfd 是要讀的套接字描述符。buf 是要讀的信息的緩衝。len 是緩 衝的最大長度。flags 可以設置爲0。(請參考recv() 的 man page。) recv() 返回實際讀入緩衝的數據的字節數。或者在錯誤的時候返回-1, 同時設置 errno。
很簡單,不是嗎? 你現在可以在流式套接字上發送數據和接收數據了。 你現在是 Unix 網絡程序員了!
--------------------------------------------------------------------------------
sendto() 和 recvfrom()函數
  “這很不錯啊”,你說,“但是你還沒有講無連接數據報套接字呢?” 沒問題,現在我們開始這個內容。
既然數據報套接字不是連接到遠程主機的,那麼在我們發送一個包之 前需要什麼信息呢? 不錯,是目標地址!看看下面的:
int sendto(int sockfd, const void *msg, int len, unsigned int flags,
  const struct sockaddr *to, int tolen);
你已經看到了,除了另外的兩個信息外,其餘的和函數 send() 是一樣 的。 to 是個指向數據結構 struct sockaddr 的指針,它包含了目的地的 IP 地址和端口信息。tolen 可以簡單地設置爲 sizeof(struct sockaddr)。 和函數 send() 類似,sendto() 返回實際發送的字節數(它也可能小於 你想要發送的字節數!),或者在錯誤的時候返回 -1。
相似的還有函數 recv() 和 recvfrom()。recvfrom() 的定義是這樣的:
int recvfrom(int sockfd, void *buf, int len, unsigned int flags,  struct sockaddr *from, int *fromlen);
又一次,除了兩個增加的參數外,這個函數和 recv() 也是一樣的。from 是一個指向局部數據結構 struct sockaddr 的指針,它的內容是源機器的 IP 地址和端口信息。fromlen 是個 int 型的局部指針,它的初始值爲 sizeof(struct sockaddr)。函數調用返回後,fromlen 保存着實際儲存在 from 中的地址的長度。
recvfrom() 返回收到的字節長度,或者在發生錯誤後返回 -1。
記住,如果你用 connect() 連接一個數據報套接字,你可以簡單的調 用 send() 和 recv() 來滿足你的要求。這個時候依然是數據報套接字,依 然使用 UDP,系統套接字接口會爲你自動加上了目標和源的信息。
--------------------------------------------------------------------------------
close()和shutdown()函數
  你已經整天都在發送 (send()) 和接收 (recv()) 數據了,現在你準備關 閉你的套接字描述符了。這很簡單,你可以使用一般的 Unix 文件描述符 的 close() 函數:
  close(sockfd);
它將防止套接字上更多的數據的讀寫。任何在另一端讀寫套接字的企 圖都將返回錯誤信息。
如果你想在如何關閉套接字上有多一點的控制,你可以使用函數 shutdown()。它允許你將一定方向上的通訊或者雙向的通訊(就象close()一 樣)關閉,你可以使用:
int shutdown(int sockfd, int how);
sockfd 是你想要關閉的套接字文件描述復。how 的值是下面的其中之 一:
  0 – 不允許接受
  1 – 不允許發送
  2 – 不允許發送和接受(和 close() 一樣)
shutdown() 成功時返回 0,失敗時返回 -1(同時設置 errno。) 如果在無連接的數據報套接字中使用shutdown(),那麼只不過是讓 send() 和 recv() 不能使用(記住你在數據報套接字中使用了 connect 後 是可以使用它們的)。
--------------------------------------------------------------------------------
getpeername()函數
  這個函數太簡單了。
它太簡單了,以至我都不想單列一章。但是我還是這樣做了。 函數 getpeername() 告訴你在連接的流式套接字上誰在另外一邊。函 數是這樣的:
#include <sys/socket.h>
int getpeername(int sockfd, struct sockaddr *addr, int *addrlen);
sockfd 是連接的流式套接字的描述符。addr 是一個指向結構 struct sockaddr (或者是 struct sockaddr_in) 的指針,它保存着連接的另一邊的 信息。addrlen 是一個 int 型的指針,它初始化爲 sizeof(struct sockaddr)。 函數在錯誤的時候返回 -1,設置相應的 errno。
一旦你獲得它們的地址,你可以使用 inet_ntoa() 或者 gethostbyaddr() 來打印或者獲得更多的信息。但是你不能得到它的帳號。(如果它運行着愚 蠢的守護進程,這是可能的,但是它的討論已經超出了本文的範圍,請參 考 RFC-1413 以獲得更多的信息。)
--------------------------------------------------------------------------------
gethostname()函數
  甚至比 getpeername() 還簡單的函數是 gethostname()。它返回你程 序所運行的機器的主機名字。然後你可以使用 gethostbyname() 以獲得你 的機器的 IP 地址。
  下面是定義:
  #include <unistd.h>
int gethostname(char *hostname, size_t size);
參數很簡單:hostname 是一個字符數組指針,它將在函數返回時保存
主機名。size是hostname 數組的字節長度。
函數調用成功時返回 0,失敗時返回 -1,並設置 errno。
--------------------------------------------------------------------------------
域名服務(DNS)
  如果你不知道 DNS 的意思,那麼我告訴你,它代表域名服務(Domain Name Service)。它主要的功能是:你給它一個容易記憶的某站點的地址, 它給你 IP 地址(然後你就可以使用 bind(), connect(), sendto() 或者其它 函數) 。當一個人輸入:
   $ telnet whitehouse.gov
telnet 能知道它將連接 (connect()) 到 "198.137.240.100"。
但是這是如何工作的呢? 你可以調用函數 gethostbyname():
#include <netdb.h>
  struct hostent *gethostbyname(const char *name);
很明白的是,它返回一個指向 struct hostent 的指針。這個數據結構 是這樣的:
   struct hostent {
   char *h_name;
   char **h_aliases;
   int h_addrtype;
   int h_length;
   char **h_addr_list;
   };
   #define h_addr h_addr_list[0]
這裏是這個數據結構的詳細資料:
struct hostent:
  h_name – 地址的正式名稱。
  h_aliases – 空字節-地址的預備名稱的指針。
  h_addrtype –地址類型; 通常是AF_INET。
  h_length – 地址的比特長度。
  h_addr_list – 零字節-主機網絡地址指針。網絡字節順序。
  h_addr - h_addr_list中的第一地址。
gethostbyname() 成功時返回一個指向結構體 hostent 的指針,或者 是個空 (NULL) 指針。(但是和以前不同,不設置errno,h_errno 設置錯 誤信息。請看下面的 herror()。)
但是如何使用呢? 有時候(我們可以從電腦手冊中發現),向讀者灌輸 信息是不夠的。這個函數可不象它看上去那麼難用。
這裏是個例子:
#include <stdio.h>
  #include <stdlib.h>
  #include <errno.h>
  #include <netdb.h>
  #include <sys/types.h>
  #include <netinet/in.h>
int main(int argc, char *argv[])
   {
   struct hostent *h;
if (argc != 2) { /* 檢查命令行 sockfd, new_fd; /* listen on sock_fd, new connection on new_fd */
  struct sockaddr_in my_addr; /* 地址信息 */
  struct sockaddr_in their_addr; /* connector's address information */
  int sin_size;
sockfd = socket(AF_INET, SOCK_STREAM, 0); /* 錯誤檢查*/
my_addr.sin_family = AF_INET; /* host byte order */
  my_addr.sin_port = htons(MYPORT); /* short, network byte order */
  my_addr.sin_addr.s_addr = INADDR_ANY; /* auto-fill with my IP */
  bzero(&(my_addr.sin_zero),; /* zero the rest of the struct */
/* don't forget your error checking for these calls: */
  bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr));
listen(sockfd, BACKLOG);
sin_size = sizeof(struct sockaddr_in);
  new_fd = accept(sockfd, &their_addr, &sin_size);
   .
   .
   .
注意,在系統調用 send() 和 recv() 中你應該使用新的套接字描述符 new_fd。如果你只想讓一個連接進來,那麼你可以使用 close() 去關閉原 來的文件描述符 sockfd 來避免同一個端口更多的連接。
--------------------------------------------------------------------------------
send() and recv()函數
  這兩個函數用於流式套接字或者數據報套接字的通訊。如果你喜歡使 用無連接的數據報套接字,你應該看一看下面關於sendto() 和 recvfrom() 的章節。
send() 是這樣的:
int send(int sockfd, const void *msg, int len, int flags);
sockfd 是你想發送數據的套接字描述符(或者是調用 socket() 或者是 accept() 返回的。)msg 是指向你想發送的數據的指針。len 是數據的長度。 把 flags 設置爲 0 就可以了。(詳細的資料請看 send() 的 man page)。
這裏是一些可能的例子:
char *msg = "Beej was here!";
  int len, bytes_sent;
  .
  .
  len = strlen(msg);
  bytes_sent = send(sockfd, msg, len, 0);
  .
  .
  .
send() 返回實際發送的數據的字節數--它可能小於你要求發送的數 目! 注意,有時候你告訴它要發送一堆數據可是它不能處理成功。它只是 發送它可能發送的數據,然後希望你能夠發送其它的數據。記住,如果 send() 返回的數據和 len 不匹配,你就應該發送其它的數據。但是這裏也 有個好消息:如果你要發送的包很小(小於大約 1K),它可能處理讓數據一 次發送完。最後要說得就是,它在錯誤的時候返回-1,並設置 errno。
recv() 函數很相似:
int recv(int sockfd, void *buf, int len, unsigned int flags);
sockfd 是要讀的套接字描述符。buf 是要讀的信息的緩衝。len 是緩 衝的最大長度。flags 可以設置爲0。(請參考recv() 的 man page。) recv() 返回實際讀入緩衝的數據的字節數。或者在錯誤的時候返回-1, 同時設置 errno。
很簡單,不是嗎? 你現在可以在流式套接字上發送數據和接收數據了。 你現在是 Unix 網絡程序員了!
--------------------------------------------------------------------------------
sendto() 和 recvfrom()函數
  “這很不錯啊”,你說,“但是你還沒有講無連接數據報套接字呢?” 沒問題,現在我們開始這個內容。
既然數據報套接字不是連接到遠程主機的,那麼在我們發送一個包之 前需要什麼信息呢? 不錯,是目標地址!看看下面的:
int sendto(int sockfd, const void *msg, int len, unsigned int flags,
  const struct sockaddr *to, int tolen);
你已經看到了,除了另外的兩個信息外,其餘的和函數 send() 是一樣 的。 to 是個指向數據結構 struct sockaddr 的指針,它包含了目的地的 IP 地址和端口信息。tolen 可以簡單地設置爲 sizeof(struct sockaddr)。 和函數 send() 類似,sendto() 返回實際發送的字節數(它也可能小於 你想要發送的字節數!),或者在錯誤的時候返回 -1。
相似的還有函數 recv() 和 recvfrom()。recvfrom() 的定義是這樣的:
int recvfrom(int sockfd, void *buf, int len, unsigned int flags,  struct sockaddr *from, int *fromlen);
又一次,除了兩個增加的參數外,這個函數和 recv() 也是一樣的。from 是一個指向局部數據結構 struct sockaddr 的指針,它的內容是源機器的 IP 地址和端口信息。fromlen 是個 int 型的局部指針,它的初始值爲 sizeof(struct sockaddr)。函數調用返回後,fromlen 保存着實際儲存在 from 中的地址的長度。
recvfrom() 返回收到的字節長度,或者在發生錯誤後返回 -1。
記住,如果你用 connect() 連接一個數據報套接字,你可以簡單的調 用 send() 和 recv() 來滿足你的要求。這個時候依然是數據報套接字,依 然使用 UDP,系統套接字接口會爲你自動加上了目標和源的信息。
--------------------------------------------------------------------------------
close()和shutdown()函數
  你已經整天都在發送 (send()) 和接收 (recv()) 數據了,現在你準備關 閉你的套接字描述符了。這很簡單,你可以使用一般的 Unix 文件描述符 的 close() 函數:
  close(sockfd);
它將防止套接字上更多的數據的讀寫。任何在另一端讀寫套接字的企 圖都將返回錯誤信息。
如果你想在如何關閉套接字上有多一點的控制,你可以使用函數 shutdown()。它允許你將一定方向上的通訊或者雙向的通訊(就象close()一 樣)關閉,你可以使用:
int shutdown(int sockfd, int how);
sockfd 是你想要關閉的套接字文件描述復。how 的值是下面的其中之 一:
  0 – 不允許接受
  1 – 不允許發送
  2 – 不允許發送和接受(和 close() 一樣)
shutdown() 成功時返回 0,失敗時返回 -1(同時設置 errno。) 如果在無連接的數據報套接字中使用shutdown(),那麼只不過是讓 send() 和 recv() 不能使用(記住你在數據報套接字中使用了 connect 後 是可以使用它們的)。
--------------------------------------------------------------------------------
getpeername()函數
  這個函數太簡單了。
它太簡單了,以至我都不想單列一章。但是我還是這樣做了。 函數 getpeername() 告訴你在連接的流式套接字上誰在另外一邊。函 數是這樣的:
#include <sys/socket.h>
int getpeername(int sockfd, struct sockaddr *addr, int *addrlen);
sockfd 是連接的流式套接字的描述符。addr 是一個指向結構 struct sockaddr (或者是 struct sockaddr_in) 的指針,它保存着連接的另一邊的 信息。addrlen 是一個 int 型的指針,它初始化爲 sizeof(struct sockaddr)。 函數在錯誤的時候返回 -1,設置相應的 errno。
一旦你獲得它們的地址,你可以使用 inet_ntoa() 或者 gethostbyaddr() 來打印或者獲得更多的信息。但是你不能得到它的帳號。(如果它運行着愚 蠢的守護進程,這是可能的,但是它的討論已經超出了本文的範圍,請參 考 RFC-1413 以獲得更多的信息。)
--------------------------------------------------------------------------------
gethostname()函數
  甚至比 getpeername() 還簡單的函數是 gethostname()。它返回你程 序所運行的機器的主機名字。然後你可以使用 gethostbyname() 以獲得你 的機器的 IP 地址。
  下面是定義:
  #include <unistd.h>
int gethostname(char *hostname, size_t size);
參數很簡單:hostname 是一個字符數組指針,它將在函數返回時保存
主機名。size是hostname 數組的字節長度。
函數調用成功時返回 0,失敗時返回 -1,並設置 errno。
--------------------------------------------------------------------------------
域名服務(DNS)
  如果你不知道 DNS 的意思,那麼我告訴你,它代表域名服務(Domain Name Service)。它主要的功能是:你給它一個容易記憶的某站點的地址, 它給你 IP 地址(然後你就可以使用 bind(), connect(), sendto() 或者其它 函數) 。當一個人輸入:
   $ telnet whitehouse.gov
telnet 能知道它將連接 (connect()) 到 "198.137.240.100"。
但是這是如何工作的呢? 你可以調用函數 gethostbyname():
#include <netdb.h>
  struct hostent *gethostbyname(const char *name);
很明白的是,它返回一個指向 struct hostent 的指針。這個數據結構 是這樣的:
   struct hostent {
   char *h_name;
   char **h_aliases;
   int h_addrtype;
   int h_length;
   char **h_addr_list;
   };
   #define h_addr h_addr_list[0]
這裏是這個數據結構的詳細資料:
struct hostent:
  h_name – 地址的正式名稱。
  h_aliases – 空字節-地址的預備名稱的指針。
  h_addrtype –地址類型; 通常是AF_INET。
  h_length – 地址的比特長度。
  h_addr_list – 零字節-主機網絡地址指針。網絡字節順序。
  h_addr - h_addr_list中的第一地址。
gethostbyname() 成功時返回一個指向結構體 hostent 的指針,或者 是個空 (NULL) 指針。(但是和以前不同,不設置errno,h_errno 設置錯 誤信息。請看下面的 herror()。)
但是如何使用呢? 有時候(我們可以從電腦手冊中發現),向讀者灌輸 信息是不夠的。這個函數可不象它看上去那麼難用。
這裏是個例子:
#include <stdio.h>
  #include <stdlib.h>
  #include <errno.h>
  #include <netdb.h>
  #include <sys/types.h>
  #include <netinet/in.h>
int main(int argc, char *argv[])
   {
   struct hostent *h;
if (argc != 2) { /* 檢查命令行 :
#include <stdio.h>
  #include <stdlib.h>
  #include <errno.h>
  #include <string.h>
  #include <sys/types.h>
  #include <netinet/in.h>
  #include <sys/socket.h>
  #include <sys/wait.h>
#define MYPORT 4950 /* the port users will be sending to */
int main(int argc, char *argv[])
   {
   int sockfd;
   struct sockaddr_in their_addr; /* connector's address information */
   struct hostent *he;
   int numbytes;

if (argc != 3) {
   fprintf(stderr,"usage: talker hostname message\n");
   exit(1);
   }

if ((he=gethostbyname(argv[1])) == NULL) { /* get the host info */
   herror("gethostbyname");
   exit(1);
   }

if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {
   perror("socket");
   exit(1);
   }

their_addr.sin_family = AF_INET; /* host byte order */
   their_addr.sin_port = htons(MYPORT); /* short, network byte order
*/
   their_addr.sin_addr = *((struct in_addr *)he->h_addr);
   bzero(&(their_addr.sin_zero),; /* zero the rest of the struct */
if ((numbytes=sendto(sockfd, argv[2], strlen(argv[2]), 0, \
   (struct sockaddr *)&their_addr, sizeof(struct sockaddr))) == -1) {
   perror("sendto");
   exit(1);
   }
printf("sent %d bytes to
%s\n",numbytes,inet_ntoa(their_addr.sin_addr));
close(sockfd);
return 0;
   }
這就是所有的了。在一臺機器上運行 listener,然後在另外一臺機器上 運行 talker。觀察它們的通訊!
除了一些我在上面提到的數據套接字連接的小細節外,對於數據套接 字,我還得說一些,當一個講話者呼叫connect()函數時並指定接受者的地 址時,從這點可以看出,講話者只能向connect()函數指定的地址發送和接 受信息。因此,你不需要使用sendto()和recvfrom(),你完全可以用send() 和recv()代替。
--------------------------------------------------------------------------------
阻塞
  阻塞,你也許早就聽說了。"阻塞"是 "sleep" 的科技行話。你可能注意 到前面運行的 listener 程序,它在那裏不停地運行,等待數據包的到來。 實際在運行的是它調用 recvfrom(),然後沒有數據,因此 recvfrom() 說" 阻塞 (block)",直到數據的到來。
很多函數都利用阻塞。accept() 阻塞,所有的 recv*() 函數阻塞。它 們之所以能這樣做是因爲它們被允許這樣做。當你第一次調用 socket() 建 立套接字描述符的時候,內核就將它設置爲阻塞。如果你不想套接字阻塞, 你就要調用函數 fcntl():
#include <unistd.h>
  #include <fontl.h>
   .
   .
   sockfd = socket(AF_INET, SOCK_STREAM, 0);
   fcntl(sockfd, F_SETFL, O_NONBLOCK);
   .
   .
  通過設置套接字爲非阻塞,你能夠有效地"詢問"套接字以獲得信息。如 果你嘗試着從一個非阻塞的套接字讀信息並且沒有任何數據,它不允許阻 塞--它將返回 -1 並將 errno 設置爲 EWOULDBLOCK。
但是一般說來,這種詢問不是個好主意。如果你讓你的程序在忙等狀 態查詢套接字的數據,你將浪費大量的 CPU 時間。更好的解決之道是用 下一章講的 select() 去查詢是否有數據要讀進來。
--------------------------------------------------------------------------------
select()--多路同步 I/O
  雖然這個函數有點奇怪,但是它很有用。假設這樣的情況:你是個服 務器,你一邊在不停地從連接上讀數據,一邊在偵聽連接上的信息。 沒問題,你可能會說,不就是一個 accept() 和兩個 recv() 嗎? 這麼 容易嗎,朋友? 如果你在調用 accept() 的時候阻塞呢? 你怎麼能夠同時接 受 recv() 數據? “用非阻塞的套接字啊!” 不行!你不想耗盡所有的 CPU 吧? 那麼,該如何是好?
select() 讓你可以同時監視多個套接字。如果你想知道的話,那麼它就 會告訴你哪個套接字準備讀,哪個又準備寫,哪個套接字又發生了例外 (exception)。
閒話少說,下面是 select():
#include <sys/time.h>
  #include <sys/types.h>
  #include <unistd.h>
int select(int numfds, fd_set *readfds, fd_set *writefds,fd_set
*exceptfds, struct timeval *timeout);
這個函數監視一系列文件描述符,特別是 readfds、writefds 和 exceptfds。如果你想知道你是否能夠從標準輸入和套接字描述符 sockfd 讀入數據,你只要將文件描述符 0 和 sockfd 加入到集合 readfds 中。參 數 numfds 應該等於最高的文件描述符的值加1。在這個例子中,你應該 設置該值爲 sockfd+1。因爲它一定大於標準輸入的文件描述符 (0)。 當函數 select() 返回的時候,readfds 的值修改爲反映你選擇的哪個 文件描述符可以讀。你可以用下面講到的宏 FD_ISSET() 來測試。 在我們繼續下去之前,讓我來講講如何對這些集合進行操作。每個集 合類型都是 fd_set。下面有一些宏來對這個類型進行操作:
FD_ZERO(fd_set *set) – 清除一個文件描述符集合
  FD_SET(int fd, fd_set *set) - 添加fd到集合
  FD_CLR(int fd, fd_set *set) – 從集合中移去fd
  FD_ISSET(int fd, fd_set *set) – 測試fd是否在集合中
最後,是有點古怪的數據結構 struct timeval。有時你可不想永遠等待 別人發送數據過來。也許什麼事情都沒有發生的時候你也想每隔96秒在終 端上打印字符串 "Still Going..."。這個數據結構允許你設定一個時間,如果 時間到了,而 select() 還沒有找到一個準備好的文件描述符,它將返回讓 你繼續處理。
數據結構 struct timeval 是這樣的:
struct timeval {
   int tv_sec; /* seconds */
   int tv_usec; /* microseconds */
   };
只要將 tv_sec 設置爲你要等待的秒數,將 tv_usec 設置爲你要等待 的微秒數就可以了。是的,是微秒而不是毫秒。1,000微秒等於1毫秒,1,000 毫秒等於1秒。也就是說,1秒等於1,000,000微秒。爲什麼用符號 "usec" 呢? 字母 "u" 很象希臘字母 Mu,而 Mu 表示 "微" 的意思。當然,函數 返回的時候 timeout 可能是剩餘的時間,之所以是可能,是因爲它依賴於 你的 Unix 操作系統。
哈!我們現在有一個微秒級的定時器!別計算了,標準的 Unix 系統 的時間片是100毫秒,所以無論你如何設置你的數據結構 struct timeval, 你都要等待那麼長的時間。
還有一些有趣的事情:如果你設置數據結構 struct timeval 中的數據爲 0,select() 將立即超時,這樣就可以有效地輪詢集合中的所有的文件描述 符。如果你將參數 timeout 賦值爲 NULL,那麼將永遠不會發生超時,即 一直等到第一個文件描述符就緒。最後,如果你不是很關心等待多長時間, 那麼就把它賦爲 NULL 吧。
下面的代碼演示了在標準輸入上等待 2.5 秒:
#include <sys/time.h>
  #include <sys/types.h>
  #include <unistd.h>
#define STDIN 0 /* file descriptor for standard input */
main()
   {
  struct timeval tv;
  fd_set readfds;
tv.tv_sec = 2;
  tv.tv_usec = 500000;
FD_ZERO(&readfds);
  FD_SET(STDIN, &readfds);
/* don't care about writefds and exceptfds: */
  select(STDIN+1, &readfds, NULL, NULL, &tv);
if (FD_ISSET(STDIN, &readfds))
  printf("A key was pressed!\n");
  else
  printf("Timed out.\n");
  }
如果你是在一個 line buffered 終端上,那麼你敲的鍵應該是回車 (RETURN),否則無論如何它都會超時。
現在,你可能回認爲這就是在數據報套接字上等待數據的方式--你是對 的:它可能是。有些 Unix 系統可以按這種方式,而另外一些則不能。你 在嘗試以前可能要先看看本系統的 man page 了。
最後一件關於 select() 的事情:如果你有一個正在偵聽 (listen()) 的套 接字,你可以通過將該套接字的文件描述符加入到 readfds 集合中來看是 否有新的連接。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章