剖析Disruptor:爲什麼會這麼快?(三)揭祕內存屏障

轉載自併發編程網 – ifeve.com 本文鏈接地址: 剖析Disruptor:爲什麼會這麼快?(三)揭祕內存屏障

剖析Disruptor:爲什麼會這麼快?(三)揭祕內存屏障

原文地址:http://ifeve.com/disruptor-memory-barriers/

譯者:杜建雄 校對:歐振聰

最近我博客文章更新有點慢,因爲我在忙着寫一篇介紹內存屏障(Memory Barries)以及如何將其應用於Disruptor的文章。問題是,無論我翻閱了多少資料,向耐心的MartinMike請教了多少遍,以試圖理清一些知識點,可我總是不能直觀地抓到重點。大概是因爲我不具備深厚的背景知識來幫助我透徹理解。

所以,與其像個傻瓜一樣試圖去解釋一些自己都沒完全弄懂的東西,還不如在抽象和大量簡化的層次上,把我在該領域所掌握的知識分享給大家 。Martin已經寫了一篇文章《going into memory barriers》介紹內存屏障的一些具體細節,所以我就略過不說了。

免責聲明:文章中如有錯誤全由本人負責,與Disruptor的實現和LMAX裏真正懂這些知識的大牛們無關。

主題是什麼?

我寫這個系列的博客主要目的是解析Disruptor是如何工作的,並深入瞭解下爲什麼這樣工作。理論上,我應該從準備使用disruptor的開發人員的角度來寫,以便在代碼和技術論文[Disruptor-1.0.pdf]之間搭建一座橋樑。這篇文章提及到了內存屏障,我想弄清楚它們到底是什麼,以及它們是如何應用於實踐中的。

什麼是內存屏障?

它是一個CPU指令。沒錯,又一次,我們在討論CPU級別的東西,以便獲得我們想要的性能(Martin著名的Mechanical Sympathy理論)。基本上,它是這樣一條指令: a)確保一些特定操作執行的順序; b)影響一些數據的可見性(可能是某些指令執行後的結果)。

編譯器和CPU可以在保證輸出結果一樣的情況下對指令重排序,使性能得到優化。插入一個內存屏障,相當於告訴CPU和編譯器先於這個命令的必須先執行,後於這個命令的必須後執行。正如去拉斯維加斯旅途中各個站點的先後順序在你心中都一清二楚。

MemoryBarrier

內存屏障另一個作用是強制更新一次不同CPU的緩存。例如,一個寫屏障會把這個屏障前寫入的數據刷新到緩存,這樣任何試圖讀取該數據的線程將得到最新值,而不用考慮到底是被哪個cpu核心或者哪顆CPU執行的。

和Java有什麼關係?

現在我知道你在想什麼——這不是彙編程序。它是Java。

這裏有個神奇咒語叫volatile(我覺得這個詞在Java規範中從未被解釋清楚)。如果你的字段是volatile,Java內存模型將在寫操作後插入一個寫屏障指令,在讀操作前插入一個讀屏障指令。

MemoryBarrierWrite

這意味着如果你對一個volatile字段進行寫操作,你必須知道:

  1. 一旦你完成寫入,任何訪問這個字段的線程將會得到最新的值。

  2. 在你寫入前,會保證所有之前發生的事已經發生,並且任何更新過的數據值也是可見的,因爲內存屏障會把之前的寫入值都刷新到緩存。

舉個例子唄!

很高興你這樣說了。又是時候讓我來畫幾個甜甜圈了。

RingBuffer的指針(cursor)(譯註:指向隊尾元素)屬於一個神奇的volatile變量,同時也是我們能夠不用鎖操作就能實現Disruptor的原因之一。

BarriersWriteExample

生產者將會取得下一個Entry(或者是一批),並可對它(們)作任意改動, 把它(們)更新爲任何想要的值。如你所知,在所有改動都完成後,生產者對ring buffer調用commit方法來更新序列號(譯註:把cursor更新爲該Entry的序列號)。對volatile字段(cursor)的寫操作創建了一個內存屏障,這個屏障將刷新所有緩存裏的值(或者至少相應地使得緩存失效)。

這時候,消費者們能獲得最新的序列號碼(8),並且因爲內存屏障保證了它之前執行的指令的順序,消費者們可以確信生產者對7號Entry所作的改動已經可用。

…那麼消費者那邊會發生什麼?

消費者中的序列號是volatile類型的,會被若干個外部對象讀取——其他的下游消費者可能在跟蹤這個消費者。ProducerBarrier/RingBuffer(取決於你看的是舊的還是新的代碼)跟蹤它以確保環沒有出現重疊(wrap)的情況(譯註:爲了防止下游的消費者和上游的消費者對同一個Entry競爭消費,導致在環形隊列中互相覆蓋數據,下游消費者要對上游消費者的消費情況進行跟蹤)。

MemoryBarrierReadExample

所以,如果你的下游消費者(C2)看見前一個消費者(C1)在消費號碼爲12的Entry,當C2的讀取也到了12,它在更新序列號前將可以獲得C1對該Entry的所作的更新。

基本來說就是,C1更新序列號前對ring buffer的所有操作(如上圖黑色所示),必須先發生,待C2拿到C1更新過的序列號之後,C2纔可以爲所欲爲(如上圖藍色所示)。

對性能的影響

內存屏障作爲另一個CPU級的指令,沒有鎖那樣大的開銷。內核並沒有在多個線程間干涉和調度。但凡事都是有代價的。內存屏障的確是有開銷的——編譯器/cpu不能重排序指令,導致不可以儘可能地高效利用CPU,另外刷新緩存亦會有開銷。所以不要以爲用volatile代替鎖操作就一點事都沒。

你會注意到Disruptor的實現對序列號的讀寫頻率儘量降到最低。對volatile字段的每次讀或寫都是相對高成本的操作。但是,也應該認識到在批量的情況下可以獲得很好的表現。如果你知道不應對序列號頻繁讀寫,那麼很合理的想到,先獲得一整批Entries,並在更新序列號前處理它們。這個技巧對生產者和消費者都適用。以下的例子來自BatchConsumer:

    long nextSequence = sequence + 1;
    while (running)
    {
        try
        {
            final long availableSequence = consumerBarrier.waitFor(nextSequence);
            while (nextSequence <= availableSequence)
            {
                entry = consumerBarrier.getEntry(nextSequence);
                handler.onAvailable(entry);
                nextSequence++;
            }
            handler.onEndOfBatch();
            sequence = entry.getSequence();
        }
        …
        catch (final Exception ex)
        {
            exceptionHandler.handle(ex, entry);
            sequence = entry.getSequence();
            nextSequence = entry.getSequence() + 1;
        }
    }

(你會注意到,這是個舊式的代碼和命名習慣,因爲這是摘自我以前的博客文章,我認爲如果直接轉換爲新式的代碼和命名習慣會讓人有點混亂)

在上面的代碼中,我們在消費者處理entries的循環中用一個局部變量(nextSequence)來遞增。這表明我們想儘可能地減少對volatile類型的序列號的進行讀寫。

總結

內存屏障是CPU指令,它允許你對數據什麼時候對其他進程可見作出假設。在Java裏,你使用volatile關鍵字來實現內存屏障。使用volatile意味着你不用被迫選擇加鎖,並且還能讓你獲得性能的提升。

但是,你需要對你的設計進行一些更細緻的思考,特別是你對volatile字段的使用有多頻繁,以及對它們的讀寫有多頻繁。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章