如何合理地估算線程池大小?

感謝網友【蔣小強】投稿。

如何合理地估算線程池大小?

這個問題雖然看起來很小,卻並不那麼容易回答。大家如果有更好的方法歡迎賜教,先來一個天真的估算方法:假設要求一個系統的TPS(Transaction Per Second或者Task Per Second)至少爲20,然後假設每個Transaction由一個線程完成,繼續假設平均每個線程處理一個Transaction的時間爲4s。那麼問題轉化爲:

如何設計線程池大小,使得可以在1s內處理完20個Transaction?

計算過程很簡單,每個線程的處理能力爲0.25TPS,那麼要達到20TPS,顯然需要20/0.25=80個線程。

很顯然這個估算方法很天真,因爲它沒有考慮到CPU數目。一般服務器的CPU核數爲16或者32,如果有80個線程,那麼肯定會帶來太多不必要的線程上下文切換開銷。

再來第二種簡單的但不知是否可行的方法(N爲CPU總核數):

  • 如果是CPU密集型應用,則線程池大小設置爲N+1
  • 如果是IO密集型應用,則線程池大小設置爲2N+1

如果一臺服務器上只部署這一個應用並且只有這一個線程池,那麼這種估算或許合理,具體還需自行測試驗證。

接下來在這個文檔:服務器性能IO優化 中發現一個估算公式:

1 最佳線程數目 = ((線程等待時間+線程CPU時間)/線程CPU時間 )* CPU數目

比如平均每個線程CPU運行時間爲0.5s,而線程等待時間(非CPU運行時間,比如IO)爲1.5s,CPU核心數爲8,那麼根據上面這個公式估算得到:((0.5+1.5)/0.5)*8=32。這個公式進一步轉化爲:

1 最佳線程數目 = (線程等待時間與線程CPU時間之比 + 1)* CPU數目

可以得出一個結論:

線程等待時間所佔比例越高,需要越多線程。線程CPU時間所佔比例越高,需要越少線程。

上一種估算方法也和這個結論相合。

一個系統最快的部分是CPU,所以決定一個系統吞吐量上限的是CPU。增強CPU處理能力,可以提高系統吞吐量上限。但根據短板效應,真實的系統吞吐量並不能單純根據CPU來計算。那要提高系統吞吐量,就需要從“系統短板”(比如網絡延遲、IO)着手:

  • 儘量提高短板操作的並行化比率,比如多線程下載技術
  • 增強短板能力,比如用NIO替代IO

第一條可以聯繫到Amdahl定律,這條定律定義了串行系統並行化後的加速比計算公式:

1 加速比=優化前系統耗時 / 優化後系統耗時

加速比越大,表明系統並行化的優化效果越好。Addahl定律還給出了系統並行度、CPU數目和加速比的關係,加速比爲Speedup,系統串行化比率(指串行執行代碼所佔比率)爲F,CPU數目爲N:

1 Speedup <= 1 / (F + (1-F)/N)

當N足夠大時,串行化比率F越小,加速比Speedup越大。

寫到這裏,我突然冒出一個問題。

是否使用線程池就一定比使用單線程高效呢?

答案是否定的,比如Redis就是單線程的,但它卻非常高效,基本操作都能達到十萬量級/s。從線程這個角度來看,部分原因在於:

  • 多線程帶來線程上下文切換開銷,單線程就沒有這種開銷

當然“Redis很快”更本質的原因在於:Redis基本都是內存操作,這種情況下單線程可以很高效地利用CPU。而多線程適用場景一般是:存在相當比例的IO和網絡操作。

所以即使有上面的簡單估算方法,也許看似合理,但實際上也未必合理,都需要結合系統真實情況(比如是IO密集型或者是CPU密集型或者是純內存操作)和硬件環境(CPU、內存、硬盤讀寫速度、網絡狀況等)來不斷嘗試達到一個符合實際的合理估算值。

最後來一個“Dark Magic”估算方法(因爲我暫時還沒有搞懂它的原理),使用下面的類:

package pool_size_calculate;

import java.math.BigDecimal;
import java.math.RoundingMode;
import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.BlockingQueue;

/**
 * A class that calculates the optimal thread pool boundaries. It takes the
 * desired target utilization and the desired work queue memory consumption as
 * input and retuns thread count and work queue capacity.
 *
 * @author Niklas Schlimm
 *
 */
public abstract class PoolSizeCalculator {

	/**
	 * The sample queue size to calculate the size of a single {@link Runnable}
	 * element.
	 */
	private final int SAMPLE_QUEUE_SIZE = 1000;

	/**
	 * Accuracy of test run. It must finish within 20ms of the testTime
	 * otherwise we retry the test. This could be configurable.
	 */
	private final int EPSYLON = 20;

	/**
	 * Control variable for the CPU time investigation.
	 */
	private volatile boolean expired;

	/**
	 * Time (millis) of the test run in the CPU time calculation.
	 */
	private final long testtime = 3000;

	/**
	 * Calculates the boundaries of a thread pool for a given {@link Runnable}.
	 *
	 * @param targetUtilization
	 *            the desired utilization of the CPUs (0 <= targetUtilization <= 	 *            1) 	 * @param targetQueueSizeBytes 	 *            the desired maximum work queue size of the thread pool (bytes) 	 */ 	protected void calculateBoundaries(BigDecimal targetUtilization, 			BigDecimal targetQueueSizeBytes) { 		calculateOptimalCapacity(targetQueueSizeBytes); 		Runnable task = creatTask(); 		start(task); 		start(task); // warm up phase 		long cputime = getCurrentThreadCPUTime(); 		start(task); // test intervall 		cputime = getCurrentThreadCPUTime() - cputime; 		long waittime = (testtime * 1000000) - cputime; 		calculateOptimalThreadCount(cputime, waittime, targetUtilization); 	} 	private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) { 		long mem = calculateMemoryUsage(); 		BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal( 				mem), RoundingMode.HALF_UP); 		System.out.println("Target queue memory usage (bytes): " 				+ targetQueueSizeBytes); 		System.out.println("createTask() produced " 				+ creatTask().getClass().getName() + " which took " + mem 				+ " bytes in a queue"); 		System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem); 		System.out.println("* Recommended queue capacity (bytes): " 				+ queueCapacity); 	} 	/** 	 * Brian Goetz' optimal thread count formula, see 'Java Concurrency in 	 * Practice' (chapter 8.2) 	 *  	 * @param cpu 	 *            cpu time consumed by considered task 	 * @param wait 	 *            wait time of considered task 	 * @param targetUtilization 	 *            target utilization of the system 	 */ 	private void calculateOptimalThreadCount(long cpu, long wait, 			BigDecimal targetUtilization) { 		BigDecimal waitTime = new BigDecimal(wait); 		BigDecimal computeTime = new BigDecimal(cpu); 		BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime() 				.availableProcessors()); 		BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization) 				.multiply( 						new BigDecimal(1).add(waitTime.divide(computeTime, 								RoundingMode.HALF_UP))); 		System.out.println("Number of CPU: " + numberOfCPU); 		System.out.println("Target utilization: " + targetUtilization); 		System.out.println("Elapsed time (nanos): " + (testtime * 1000000)); 		System.out.println("Compute time (nanos): " + cpu); 		System.out.println("Wait time (nanos): " + wait); 		System.out.println("Formula: " + numberOfCPU + " * " 				+ targetUtilization + " * (1 + " + waitTime + " / " 				+ computeTime + ")"); 		System.out.println("* Optimal thread count: " + optimalthreadcount); 	} 	/** 	 * Runs the {@link Runnable} over a period defined in {@link #testtime}. 	 * Based on Heinz Kabbutz' ideas 	 * (http://www.javaspecialists.eu/archive/Issue124.html). 	 *  	 * @param task 	 *            the runnable under investigation 	 */ 	public void start(Runnable task) { 		long start = 0; 		int runs = 0; 		do { 			if (++runs > 5) {
				throw new IllegalStateException("Test not accurate");
			}
			expired = false;
			start = System.currentTimeMillis();
			Timer timer = new Timer();
			timer.schedule(new TimerTask() {
				public void run() {
					expired = true;
				}
			}, testtime);
			while (!expired) {
				task.run();
			}
			start = System.currentTimeMillis() - start;
			timer.cancel();
		} while (Math.abs(start - testtime) > EPSYLON);
		collectGarbage(3);
	}

	private void collectGarbage(int times) {
		for (int i = 0; i < times; i++) {
			System.gc();
			try {
				Thread.sleep(10);
			} catch (InterruptedException e) {
				Thread.currentThread().interrupt();
				break;
			}
		}
	}

	/**
	 * Calculates the memory usage of a single element in a work queue. Based on
	 * Heinz Kabbutz' ideas
	 * (http://www.javaspecialists.eu/archive/Issue029.html).
	 *
	 * @return memory usage of a single {@link Runnable} element in the thread
	 *         pools work queue
	 */
	public long calculateMemoryUsage() {
		BlockingQueue queue = createWorkQueue();
		for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
			queue.add(creatTask());
		}
		long mem0 = Runtime.getRuntime().totalMemory()
				- Runtime.getRuntime().freeMemory();
		long mem1 = Runtime.getRuntime().totalMemory()
				- Runtime.getRuntime().freeMemory();
		queue = null;
		collectGarbage(15);
		mem0 = Runtime.getRuntime().totalMemory()
				- Runtime.getRuntime().freeMemory();
		queue = createWorkQueue();
		for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
			queue.add(creatTask());
		}
		collectGarbage(15);
		mem1 = Runtime.getRuntime().totalMemory()
				- Runtime.getRuntime().freeMemory();
		return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;
	}

	/**
	 * Create your runnable task here.
	 *
	 * @return an instance of your runnable task under investigation
	 */
	protected abstract Runnable creatTask();

	/**
	 * Return an instance of the queue used in the thread pool.
	 *
	 * @return queue instance
	 */
	protected abstract BlockingQueue createWorkQueue();

	/**
	 * Calculate current cpu time. Various frameworks may be used here,
	 * depending on the operating system in use. (e.g.
	 * http://www.hyperic.com/products/sigar). The more accurate the CPU time
	 * measurement, the more accurate the results for thread count boundaries.
	 *
	 * @return current cpu time of current thread
	 */
	protected abstract long getCurrentThreadCPUTime();

}

然後自己繼承這個抽象類並實現它的三個抽象方法,比如下面是我寫的一個示例(任務是請求網絡數據),其中我指定期望CPU利用率爲1.0(即100%),任務隊列總大小不超過100,000字節:

package pool_size_calculate;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.lang.management.ManagementFactory;
import java.math.BigDecimal;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;

public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator {

	@Override
	protected Runnable creatTask() {
		return new AsyncIOTask();
	}

	@Override
	protected BlockingQueue createWorkQueue() {
		return new LinkedBlockingQueue(1000);
	}

	@Override
	protected long getCurrentThreadCPUTime() {
		return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();
	}

	public static void main(String[] args) {
		PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl();
		poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));
	}

}

/**
 * 自定義的異步IO任務
 * @author Will
 *
 */
class AsyncIOTask implements Runnable {

	@Override
	public void run() {
		HttpURLConnection connection = null;
		BufferedReader reader = null;
		try {
			String getURL = "http://baidu.com";
			URL getUrl = new URL(getURL);

			connection = (HttpURLConnection) getUrl.openConnection();
			connection.connect();
			reader = new BufferedReader(new InputStreamReader(
					connection.getInputStream()));

			String line;
			while ((line = reader.readLine()) != null) {
				// empty loop
			}
		}

		catch (IOException e) {

		} finally {
			if(reader != null) {
				try {
					reader.close();
				}
				catch(Exception e) {
				}
			}
			connection.disconnect();
		}
	}
}
得到的輸出如下:

Target queue memory usage (bytes): 100000
createTask() produced pool_size_calculate.AsyncIOTask which took 40 bytes in a queue
Formula: 100000 / 40
* Recommended queue capacity (bytes): 2500
Number of CPU: 4
Target utilization: 1
Elapsed time (nanos): 3000000000
Compute time (nanos): 47181000
Wait time (nanos): 2952819000
Formula: 4 * 1 * (1 + 2952819000 / 47181000)
* Optimal thread count: 256
推薦的任務隊列大小爲2500,線程數爲256,有點出乎意料之外。我可以如下構造一個線程池:

ThreadPoolExecutor pool =
 new ThreadPoolExecutor(256, 256, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(2500));
轉自http://ifeve.com/how-to-calculate-threadpool-size/



發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章