IO多路複用的幾種實現機制的分析

轉載地址:http://blog.csdn.net/zhang_shuai_2011/article/details/7675797

elect,poll,epoll都是IO多路複用的機制。所謂I/O多路複用機制,就是說通過一種機制,可以監視多個描述符,一旦某個描述符就緒(一般是讀就緒或者寫就緒),能夠通知程序進行相應的讀寫操作。但select,poll,epoll本質上都是同步I/O,因爲他們都需要在讀寫事件就緒後自己負責進行讀寫,也就是說這個讀寫過程是阻塞的,而異步I/O則無需自己負責進行讀寫,異步I/O的實現會負責把數據從內核拷貝到用戶空間。關於阻塞,非阻塞,同步,異步將在下一篇文章詳細說明。

 

select和poll的實現比較相似,目前也有很多爲人詬病的缺點,epoll可以說是select和poll的增強版。

一、select實現

1、使用copy_from_user從用戶空間拷貝fd_set到內核空間

2、註冊回調函數__pollwait

3、遍歷所有fd,調用其對應的poll方法(對於socket,這個poll方法是sock_poll,sock_poll根據情況會調用到tcp_poll,udp_poll或者datagram_poll)

4、以tcp_poll爲例,其核心實現就是__pollwait,也就是上面註冊的回調函數。

5、__pollwait的主要工作就是把current(當前進程)掛到設備的等待隊列中,不同的設備有不同的等待隊列,對於tcp_poll來說,其等待隊列是sk->sk_sleep(注意把進程掛到等待隊列中並不代表進程已經睡眠了)。在設備收到一條消息(網絡設備)或填寫完文件數據(磁盤設備)後,會喚醒設備等待隊列上睡眠的進程,這時current便被喚醒了。

6、poll方法返回時會返回一個描述讀寫操作是否就緒的mask掩碼,根據這個mask掩碼給fd_set賦值。

7、如果遍歷完所有的fd,還沒有返回一個可讀寫的mask掩碼,則會調用schedule_timeout是調用select的進程(也就是current)進入睡眠。當設備驅動發生自身資源可讀寫後,會喚醒其等待隊列上睡眠的進程。如果超過一定的超時時間(schedule_timeout指定),還是沒人喚醒,則調用select的進程會重新被喚醒獲得CPU,進而重新遍歷fd,判斷有沒有就緒的fd。

8、把fd_set從內核空間拷貝到用戶空間。

總結:

select的幾大缺點:

(1)每次調用select,都需要把fd集合從用戶態拷貝到內核態,這個開銷在fd很多時會很大

(2)同時每次調用select都需要在內核遍歷傳遞進來的所有fd,這個開銷在fd很多時也很大

(3)select支持的文件描述符數量太小了,默認是1024

二、poll實現

poll的實現和select非常相似,只是描述fd集合的方式不同,poll使用pollfd結構而不是select的fd_set結構。其他的都差不多。

三、epoll實現

epoll既然是對select和poll的改進,就應該能避免上述的三個缺點。那epoll都是怎麼解決的呢?在此之前,我們先看一下epoll和select和poll的調用接口上的不同,select和poll都只提供了一個函數——select或者poll函數。而epoll提供了三個函數,epoll_create,epoll_ctl和epoll_wait,epoll_create是創建一個epoll句柄;epoll_ctl是註冊要監聽的事件類型;epoll_wait則是等待事件的產生。

 

對於第一個缺點,epoll的解決方案在epoll_ctl函數中。每次註冊新的事件到epoll句柄中時(在epoll_ctl中指定EPOLL_CTL_ADD),會把所有的fd拷貝進內核,而不是在epoll_wait的時候重複拷貝。epoll保證了每個fd在整個過程中只會拷貝一次。

對於第二個缺點,epoll的解決方案不像select或poll一樣每次都把current輪流加入fd對應的設備等待隊列中,而只在epoll_ctl時把current掛一遍(這一遍必不可少)併爲每個fd指定一個回調函數,當設備就緒,喚醒等待隊列上的等待者時,就會調用這個回調函數,而這個回調函數會把就緒的fd加入一個就緒鏈表)。epoll_wait的工作實際上就是在這個就緒鏈表中查看有沒有就緒的fd(利用schedule_timeout()實現睡一會,判斷一會的效果,和select實現中的第7步是類似的)。

說明一下這個回調機制的原理,其實很簡單,看一下select和epoll在把current加入fd對應的設備等待隊列時使用的代碼:

select:

  1. static void __pollwait(struct file *filp, wait_queue_head_t *wait_address,  
  2.                 poll_table *p)  
  3. {  
  4.     struct poll_table_entry *entry = poll_get_entry(p);  
  5.     if (!entry)  
  6.         return;  
  7.     get_file(filp);  
  8.     entry->filp = filp;  
  9.     entry->wait_address = wait_address;  
  10.     init_waitqueue_entry(&entry->wait, current);  
  11.     add_wait_queue(wait_address, &entry->wait);  
  12. }  

其中init_waitqueue_entry實現如下:

  1. static inline void init_waitqueue_entry(wait_queue_t *q, struct task_struct *p)  
  2. {  
  3.     q->flags = 0;  
  4.     q->private = p;  
  5.     q->func = default_wake_function;  
  6. }  

上面的代碼是說建立一個poll_table_entry結構entry,首先把current設置爲entry->wait的private成員,同時把default_wake_function設爲entry->wait的func成員,然後把entry->wait鏈入到wait_address中(這個wait_address就是設備的等待隊列,在tcp_poll中就是sk_sleep)。

再看一下epoll:

  1. /* 
  2.  * This is the callback that is used to add our wait queue to the 
  3.  * target file wakeup lists. 
  4.  */  
  5. static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,  
  6.                  poll_table *pt)  
  7. {  
  8.     struct epitem *epi = ep_item_from_epqueue(pt);  
  9.     struct eppoll_entry *pwq;  
  10.   
  11.     if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {  
  12.         init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);  
  13.         pwq->whead = whead;  
  14.         pwq->base = epi;  
  15.         add_wait_queue(whead, &pwq->wait);  
  16.         list_add_tail(&pwq->llink, &epi->pwqlist);  
  17.         epi->nwait++;  
  18.     } else {  
  19.         /* We have to signal that an error occurred */  
  20.         epi->nwait = -1;  
  21.     }  
  22. }  

其中init_waitqueue_func_entry的實現如下:

  1. static inline void init_waitqueue_func_entry(wait_queue_t *q,  
  2.                     wait_queue_func_t func)  
  3. {  
  4.     q->flags = 0;  
  5.     q->private = NULL;  
  6.     q->func = func;  

可以看到,總體和select的實現是類似的,只不過它是創建了一個eppoll_entry結構pwq,只不過pwq->wait的func成員被設置成了回調函數ep_poll_callback(而不是default_wake_function,所以這裏並不會有喚醒操作,而只是執行回調函數),private成員被設置成了NULL。最後吧pwq->wait鏈入到whead中(也就是設備等待隊列中)。這樣,當設備等待隊列中的進程被喚醒時,就會調用ep_poll_callback了。

 

再梳理一下,當epoll_wait時,它會判斷就緒鏈表中有沒有就緒的fd,如果沒有,則把current進程加入一個等待隊列(file->private_data->wq)中,並在一個while(1)循環中判斷就緒隊列是否爲空,並結合schedule_timeout實現睡一會,判斷一會的效果。如果current進程在睡眠中,設備就緒了,就會調用回調函數。在回調函數中,會把就緒的fd放入就緒鏈表,並喚醒等待隊列(file->private_data->wq)中的current進程,這樣epoll_wait又能繼續執行下去了。

對於第三個缺點,epoll沒有這個限制,它所支持的FD上限是最大可以打開文件的數目,這個數字一般遠大於2048,舉個例子,在1GB內存的機器上大約是10萬左右,具體數目可以cat /proc/sys/fs/file-max察看,一般來說這個數目和系統內存關係很大。

總結:

1、select,poll實現需要自己不斷輪詢所有fd集合,直到設備就緒,期間可能要睡眠和喚醒多次交替。而epoll其實也需要調用epoll_wait不斷輪詢就緒鏈表,期間也可能多次睡眠和喚醒交替,但是它是設備就緒時,調用回調函數,把就緒fd放入就緒鏈表中,並喚醒在epoll_wait中進入睡眠的進程。雖然都要睡眠和交替,但是select和poll在“醒着”的時候要遍歷整個fd集合,而epoll在“醒着”的時候只要判斷一下就緒鏈表是否爲空就行了,這節省了大量的CPU時間。這就是回調機制帶來的性能提升。

2、select,poll每次調用都要把fd集合從用戶態往內核態拷貝一次,並且要把current往設備等待隊列中掛一次,而epoll只要一次拷貝,而且把current往等待隊列上掛也只掛一次(在epoll_wait的開始,注意這裏的等待隊列並不是設備等待隊列,只是一個epoll內部定義的等待隊列)。這也能節省不少的開銷。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章