SOCKET 封包和拆包

轉自:http://blog.sina.com.cn/s/blog_4a69d6c301000821.html

        對於基於TCP開發的通訊程序,有個很重要的問題需要解決,就是封包和拆包.自從我從事網絡通訊編程工作以來(大概有三年的時間了),我一直在思索和改進封包和拆包的方法.下面就針對這個問題談談我的想法,拋磚引玉.若有不對,不妥之處,懇求大家指正.在此先謝過大家了.


一.爲什麼基於TCP的通訊程序需要進行封包和拆包.
        TCP是個"流"協議,所謂流,就是沒有界限的一串數據.大家可以想想河裏的流水,是連成一片的,其間是沒有分界線的.但一般通訊程序開發是需要定義一個個相互獨立的數據包的,比如用於登陸的數據包,用於註銷的數據包.由於TCP"流"的特性以及網絡狀況,在進行數據傳輸時會出現以下幾種情況.
假設我們連續調用兩次send分別發送兩段數據data1和data2,在接收端有以下幾種接收情況(當然不止這幾種情況,這裏只列出了有代表性的情況).

A.先接收到data1,然後接收到data2.

B.先接收到data1的部分數據,然後接收到data1餘下的部分以及data2的全部.

C.先接收到了data1的全部數據和data1的部分數據,然後接收到了data2的餘下的數據.

D.一次性接收到了data1和data2的全部數據.

        對於A這種情況正是我們需要的,不再做討論.對於B,C,D的情況就是大家經常說的"粘包",就需要我們把接收到的數據進行拆包,拆成一個個獨立的數據包.爲了拆包就必須在發送端進行封包.
        另:對於UDP來說就不存在拆包的問題,因爲UDP是個"數據包"協議,也就是兩段數據間是有界限的,在接收端要麼接收不到數據要麼就是接收一個完整的一段數據,不會少接收也不會多接收.

二.爲什麼會出現B.C.D的情況.
"粘包"可發生在發送端也可發生在接收端.
 1.由Nagle算法造成的發送端的粘包:Nagle算法是一種改善網絡傳輸效率的算法.簡單的說,當我們提交一段數據給TCP發送時,TCP並不立刻發送此段數據,而是等待一小段時間,看看在等待期間是否還有要發送的數據,若有則會一次把這兩段數據發送出去.這是對Nagle算法一個簡單的解釋,詳細的請看相關書籍.象C和D的情況就有可能是Nagle算法造成的.

 2.接收端接收不及時造成的接收端粘包:TCP會把接收到的數據存在自己的緩衝區中,然後通知應用層取數據.當應用層由於某些原因不能及時的把TCP的數據取出來,就會造成TCP緩衝區中存放了幾段數據.

三.怎樣封包和拆包.
        最初遇到"粘包"的問題時,我是通過在兩次send之間調用sleep來休眠一小段時間來解決.這個解決方法的缺點是顯而易見的,使傳輸效率大大降低,而且也並不可靠.後來就是通過應答的方式來解決,儘管在大多數時候是可行的,但是不能解決象B的那種情況,而且採用應答方式增加了通訊量,加重了網絡負荷.再後來就是對數據包進行封包和拆包的操作.
封包:
        封包就是給一段數據加上包頭,這樣一來數據包就分爲包頭和包體兩部分內容了(以後講過濾非法包時封包會加入"包尾"內容).包頭其實上是個大小固定的結構體,其中有個結構體成員變量表示包體的長度,這是個很重要的變量,其他的結構體成員可根據需要自己定義.根據包頭長度固定以及包頭中含有包體長度的變量就能正確的拆分出一個完整的數據包.
    對於拆包目前我最常用的是以下兩種方式.
    1.動態緩衝區暫存方式.之所以說緩衝區是動態的是因爲當需要緩衝的數據長度超出緩衝區的長度時會增大緩衝區長度.
    大概過程描述如下:

    A,爲每一個連接動態分配一個緩衝區,同時把此緩衝區和SOCKET關聯,常用的是通過結構體關聯.

    B,當接收到數據時首先把此段數據存放在緩衝區中.

    C,判斷緩存區中的數據長度是否夠一個包頭的長度,如不夠,則不進行拆包操作.

    D,根據包頭數據解析出裏面代表包體長度的變量.

    E,判斷緩存區中除包頭外的數據長度是否夠一個包體的長度,如不夠,則不進行拆包操作.

    F,取出整個數據包.這裏的"取"的意思是不光從緩衝區中拷貝出數據包,而且要把此數據包從緩存區中刪除掉.刪除的辦法就是把此包後面的數據移動到緩衝區的起始地址.

        這種方法有兩個缺點.1.爲每個連接動態分配一個緩衝區增大了內存的使用.2.有三個地方需要拷貝數據,一個地方是把數據存放在緩衝區,一個地方是把完整的數據包從緩衝區取出來,一個地方是把數據包從緩衝區中刪除.第二種拆包的方法會解決和完善這些缺點.

    下面給出相關代碼.
    前面提到過這種方法的缺點.下面給出一個改進辦法, 即採用環形緩衝.但是這種改進方法還是不能解決第一個缺點以及第一個數據拷貝,只能解決第三個地方的數據拷貝(這個地方是拷貝數據最多的地方).第2種拆包方式會解決這兩個問題.
環形緩衝實現方案是定義兩個指針,分別指向有效數據的頭和尾.在存放數據和刪除數據時只是進行頭尾指針的移動.
用代碼來說明.注:下面的代碼是採用一個開源的遊戲服務器的代碼,我對此代碼有所修改.


2.利用底層的緩衝區來進行拆包
由於TCP也維護了一個緩衝區,所以我們完全可以利用TCP的緩衝區來緩存我們的數據,這樣一來就不需要爲每一個連接分配一個緩衝區了.另一方面我們知道recv或者wsarecv都有一個參數,用來表示我們要接收多長長度的數據.利用這兩個條件我們就可以對第一種方法進行優化.
     對於阻塞SOCKET來說,我們可以利用一個循環來接收包頭長度的數據,然後解析出代表包體長度的那個變量,再用一個循環來接收包體長度的數據.
相關代碼如下:

char PackageHead[1024];
char PackageContext[1024*20];
int len;
PACKAGE_HEAD *pPackageHead;
while( m_bClose == false )
{
memset(PackageHead,0,sizeof(PACKAGE_HEAD));
len = m_TcpSock.ReceiveSize((char*)PackageHead,sizeof(PACKAGE_HEAD));
if( len == SOCKET_ERROR )
{
    break;
}
if(len == 0)
{
    break;
}
pPackageHead = (PACKAGE_HEAD *)PackageHead;
memset(PackageContext,0,sizeof(PackageContext));
if(pPackageHead->nDataLen>0)
{
len = m_TcpSock.ReceiveSize((char*)PackageContext,pPackageHead->nDataLen);
}
}

       m_TcpSock是一個封裝了SOCKET的類的變量,其中的ReceiveSize用於接收一定長度的數據,直到接收了一定長度的數據或者網絡出錯才返回.

int winSocket::ReceiveSize( char* strData, int iLen )
{
if( strData == NULL )
return ERR_BADPARAM;
char *p = strData;
int len = iLen;
int ret = 0;
int returnlen = 0;
while( len > 0)
{
ret = recv( m_hSocket, p+(iLen-len), iLen-returnlen, 0 );
if ( ret == SOCKET_ERROR || ret == 0 )
{
return ret;
}
len -= ret;
returnlen += ret;
}
return returnlen;
}
對於非阻塞的SOCKET,比如完成端口,我們可以提交接收包頭長度的數據的請求,當GetQueuedCompletionStatus返回時,我們判斷接收的數據長度是否等於包頭長度,若等於,則提交接收包體長度的數據的請求,若不等於則提交接收剩餘數據的請求.當接收包體時,採用類似的方法.
下面給出相關代碼

enum IOType
{
IOInitialize,
IORead,
IOWrite,
IOIdle
};
class OVERLAPPEDPLUS
{
public:
OVERLAPPEDm_ol;
IOTypem_ioType;
bool         m_bIsPackageHead;//當前接收的數據是否是包頭數據。
int          m_count;
WSABUF       m_wsaBuffer;
int          m_RecvPos;
char         m_Buffer[1024*8];//此緩衝要儘可能大
OVERLAPPEDPLUS(IOType ioType) {
ZeroMemory(this, sizeof(OVERLAPPEDPLUS));
m_ioType = ioType;
}
};
接收連接後發出的第一個請求,請求接收包頭大小的數據.
OVERLAPPEDPLUS*pOverlappedPlus =  new OVERLAPPEDPLUS;
pOverlappedPlus->m_wsaBuffer.buf =  pOverlappedPlus->m_Buffer;
pOverlappedPlus->m_wsaBuffer.len =  PACKAGE_HEAD_LEN;///包頭的長度
pOverlappedPlus->m_bIsPackageHead = true;
pOverlappedPlus->m_RecvPos = 0;
pOverlappedPlus->m_ioType = IORead;

DWORD RecvBytes;
    DWORD Flags;
Flags = 0;
if (WSARecv(clientSocket, &(pOverlappedPlus->m_wsaBuffer), 1, &RecvBytes, &Flags,
&pOverlappedPlus->m_ol, NULL) == SOCKET_ERROR)
{
if (WSAGetLastError() != ERROR_IO_PENDING)
{
delete pOverlappedPlus;
}
else
{
///相關的錯誤處理
}
}
else
{
///相關的錯誤處理
}

在GetQueuedCompletionStatus所在的函數中.
if( pOverlapPlus->m_ioType== IORead)
{
if( pOverlapPlus->m_wsaBuffer.len == dwIoSize )
{
if( pOverlapPlus->m_bIsPackageHead == true )///接收到的是包頭。
{
PACKAGE_HEAD *pPackageHead = (PACKAGE_HEAD *)(pOverlapPlus->m_Buffer);
if(pThis->IsLegalityPackageHead(pPackageHead)==false)///判斷是否是合法的包
{
closesocket(lpClientContext->m_Socket);
continue;
}
pOverlapPlus->m_bIsPackageHead = false;
pOverlapPlus->m_wsaBuffer.len = pPackageHead->nDataLen;
pOverlapPlus->m_RecvPos += dwIoSize;
pOverlapPlus->m_wsaBuffer.buf = pOverlapPlus->m_Buffer+pOverlapPlus->m_RecvPos;
}
else///接收到的是包體
{
pOverlapPlus->m_RecvPos += dwIoSize;
///這時pOverlapPlus->m_Buffer裏就存放了一個完整的數據包,長度爲pOverlapPlus->m_RecvPos

///繼續請求 請求下一個數據包的包頭
pOverlapPlus->m_wsaBuffer.buf =  pOverlapPlus->m_Buffer;
memset(pOverlapPlus->m_Buffer,0,sizeof(pOverlapPlus->m_Buffer));
pOverlapPlus->m_wsaBuffer.len =  PACKAGE_HEAD_LEN;
pOverlapPlus->m_bIsPackageHead = true;
pOverlapPlus->m_RecvPos = 0;
}
}
else///接收的數據還不完整
{
pOverlapPlus->m_wsaBuffer.len -= dwIoSize;
pOverlapPlus->m_RecvPos += dwIoSize;
pOverlapPlus->m_wsaBuffer.buf = pOverlapPlus->m_Buffer+pOverlapPlus->m_RecvPos;
}
pOverlapPlus->m_ioType = IORead;
state = WSARecv(lpClientContext->m_Socket, &(pOverlapPlus->m_wsaBuffer), 1, &RecvBytes, &Flags,
&pOverlapPlus->m_ol, NULL);
if ( state == SOCKET_ERROR)
{
if(WSAGetLastError() != ERROR_IO_PENDING)
{
  
   //關閉套接字 釋放相應資源
continue;
}
}
}


發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章