深入理解Java併發之synchronized實現原理

轉載申明

之前一直對“訪問synchronized修飾的對象,獲取的是對象的鎖”這句話的語義認識很模糊,近日在博客上閒逛的時候看到這篇文章《深入理解Java併發之synchronized實現原理》,感到十分受用,自己平時也算是注意積累,隨手瞎寫一些個人的讀書筆記,但相較於這篇文章,驚覺自己還有很長的路要走。
故通過對此文作者吳老師的意見徵求,得到了轉載的允許,現將此文轉載到自己的博客,方便日後反覆研讀以及學習行文思路。

正文

本篇主要是對Java併發中synchronized關鍵字進行較爲深入的探索,這些知識點結合博主對synchronized的個人理解以及相關的書籍的講解(在結尾參考資料),如有誤處,歡迎留言。

線程安全是併發編程中的重要關注點,應該注意到的是,造成線程安全問題的主要誘因有兩點,一是存在共享數據(也稱臨界資源),二是存在多條線程共同操作共享數據。因此爲了解決這個問題,我們可能需要這樣一個方案,當存在多個線程操作共享數據時,需要保證同一時刻有且只有一個線程在操作共享數據,其他線程必須等到該線程處理完數據後再進行,這種方式有個高尚的名稱叫互斥鎖,即能達到互斥訪問目的的鎖,也就是說當一個共享數據被當前正在訪問的線程加上互斥鎖後,在同一個時刻,其他線程只能處於等待的狀態,直到當前線程處理完畢釋放該鎖。在 Java 中,關鍵字 synchronized可以保證在同一個時刻,只有一個線程可以執行某個方法或者某個代碼塊(主要是對方法或者代碼塊中存在共享數據的操作),同時我們還應該注意到synchronized另外一個重要的作用,synchronized可保證一個線程的變化(主要是共享數據的變化)被其他線程所看到(保證可見性,完全可以替代Volatile功能),這點確實也是很重要的。

synchronized的三種應用方式

synchronized關鍵字最主要有以下3種應用方式,下面分別介紹

修飾實例方法,作用於當前實例加鎖,進入同步代碼前要獲得當前實例的鎖

修飾靜態方法,作用於當前類對象加鎖,進入同步代碼前要獲得當前類對象的鎖

修飾代碼塊,指定加鎖對象,對給定對象加鎖,進入同步代碼庫前要獲得給定對象的鎖。

synchronized作用於實例方法

所謂的實例對象鎖就是用synchronized修飾實例對象中的實例方法,注意是實例方法不包括靜態方法,如下

public class AccountingSync implements Runnable{
    //共享資源(臨界資源)
    static int i=0;

    /**
     * synchronized 修飾實例方法
     */
    public synchronized void increase(){
        i++;
    }
    @Override
    public void run() {
        for(int j=0;j<1000000;j++){
            increase();
        }
    }
    public static void main(String[] args) throws InterruptedException {
        AccountingSync instance=new AccountingSync();
        Thread t1=new Thread(instance);
        Thread t2=new Thread(instance);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println(i);
    }
    /**
     * 輸出結果:
     * 2000000
     */
}

上述代碼中,我們開啓兩個線程操作同一個共享資源即變量i,由於i++;操作並不具備原子性,該操作是先讀取值,然後寫回一個新值,相當於原來的值加上1,分兩步完成,如果第二個線程在第一個線程讀取舊值和寫回新值期間讀取i的域值,那麼第二個線程就會與第一個線程一起看到同一個值,並執行相同值的加1操作,這也就造成了線程安全失敗,因此對於increase方法必須使用synchronized修飾,以便保證線程安全。此時我們應該注意到synchronized修飾的是實例方法increase,在這樣的情況下,當前線程的鎖便是實例對象instance,注意Java中的線程同步鎖可以是任意對象。從代碼執行結果來看確實是正確的,倘若我們沒有使用synchronized關鍵字,其最終輸出結果就很可能小於2000000,這便是synchronized關鍵字的作用。這裏我們還需要意識到,當一個線程正在訪問一個對象的 synchronized 實例方法,那麼其他線程不能訪問該對象的其他 synchronized 方法,畢竟一個對象只有一把鎖,當一個線程獲取了該對象的鎖之後,其他線程無法獲取該對象的鎖,所以無法訪問該對象的其他synchronized實例方法,但是其他線程還是可以訪問該實例對象的其他非synchronized方法,當然如果是一個線程 A 需要訪問實例對象 obj1 的 synchronized 方法 f1(當前對象鎖是obj1),另一個線程 B 需要訪問實例對象 obj2 的 synchronized 方法 f2(當前對象鎖是obj2),這樣是允許的,因爲兩個實例對象鎖並不同相同,此時如果兩個線程操作數據並非共享的,線程安全是有保障的,遺憾的是如果兩個線程操作的是共享數據,那麼線程安全就有可能無法保證了,如下代碼將演示出該現象:

public class AccountingSyncBad implements Runnable{
    static int i=0;
    public synchronized void increase(){
        i++;
    }
    @Override
    public void run() {
        for(int j=0;j<1000000;j++){
            increase();
        }
    }
    public static void main(String[] args) throws InterruptedException {
        //new新實例
        Thread t1=new Thread(new AccountingSyncBad());
        //new新實例
        Thread t2=new Thread(new AccountingSyncBad());
        t1.start();
        t2.start();
        //join含義:當前線程A等待thread線程終止之後才能從thread.join()返回
        t1.join();
        t2.join();
        System.out.println(i);
    }
}

上述代碼與前面不同的是我們同時創建了兩個新實例AccountingSyncBad,然後啓動兩個不同的線程對共享變量i進行操作,但很遺憾操作結果是1452317而不是期望結果2000000,因爲上述代碼犯了嚴重的錯誤,雖然我們使用synchronized修飾了increase方法,但卻new了兩個不同的實例對象,這也就意味着存在着兩個不同的實例對象鎖,因此t1和t2都會進入各自的對象鎖,也就是說t1和t2線程使用的是不同的鎖,因此線程安全是無法保證的。解決這種困境的的方式是將synchronized作用於靜態的increase方法,這樣的話,對象鎖就當前類對象,由於無論創建多少個實例對象,但對於的類對象擁有隻有一個,所有在這樣的情況下對象鎖就是唯一的。下面我們看看如何使用將synchronized作用於靜態的increase方法。

synchronized作用於靜態方法

當synchronized作用於靜態方法時,其鎖就是當前類的class對象鎖。由於靜態成員不專屬於任何一個實例對象,是類成員,因此通過class對象鎖可以控制靜態 成員的併發操作。需要注意的是如果一個線程A調用一個實例對象的非static synchronized方法,而線程B需要調用這個實例對象所屬類的靜態 synchronized方法,是允許的,不會發生互斥現象,因爲訪問靜態 synchronized 方法佔用的鎖是當前類的class對象,而訪問非靜態 synchronized 方法佔用的鎖是當前實例對象鎖,看如下代碼

public class AccountingSyncClass implements Runnable{
    static int i=0;

    /**
     * 作用於靜態方法,鎖是當前class對象,也就是
     * AccountingSyncClass類對應的class對象
     */
    public static synchronized void increase(){
        i++;
    }

    /**
     * 非靜態,訪問時鎖不一樣不會發生互斥
     */
    public synchronized void increase4Obj(){
        i++;
    }

    @Override
    public void run() {
        for(int j=0;j<1000000;j++){
            increase();
        }
    }
    public static void main(String[] args) throws InterruptedException {
        //new新實例
        Thread t1=new Thread(new AccountingSyncClass());
        //new心事了
        Thread t2=new Thread(new AccountingSyncClass());
        //啓動線程
        t1.start();t2.start();

        t1.join();t2.join();
        System.out.println(i);
    }
}

由於synchronized關鍵字修飾的是靜態increase方法,與修飾實例方法不同的是,其鎖對象是當前類的class對象。注意代碼中的increase4Obj方法是實例方法,其對象鎖是當前實例對象,如果別的線程調用該方法,將不會產生互斥現象,畢竟鎖對象不同,但我們應該意識到這種情況下可能會發現線程安全問題(操作了共享靜態變量i)。

synchronized同步代碼塊

除了使用關鍵字修飾實例方法和靜態方法外,還可以使用同步代碼塊,在某些情況下,我們編寫的方法體可能比較大,同時存在一些比較耗時的操作,而需要同步的代碼又只有一小部分,如果直接對整個方法進行同步操作,可能會得不償失,此時我們可以使用同步代碼塊的方式對需要同步的代碼進行包裹,這樣就無需對整個方法進行同步操作了,同步代碼塊的使用示例如下:

public class AccountingSync implements Runnable{
    static AccountingSync instance=new AccountingSync();
    static int i=0;
    @Override
    public void run() {
        //省略其他耗時操作....
        //使用同步代碼塊對變量i進行同步操作,鎖對象爲instance
        synchronized(instance){
            for(int j=0;j<1000000;j++){
                    i++;
              }
        }
    }
    public static void main(String[] args) throws InterruptedException {
        Thread t1=new Thread(instance);
        Thread t2=new Thread(instance);
        t1.start();t2.start();
        t1.join();t2.join();
        System.out.println(i);
    }
}

從代碼看出,將synchronized作用於一個給定的實例對象instance,即當前實例對象就是鎖對象,每次當線程進入synchronized包裹的代碼塊時就會要求當前線程持有instance實例對象鎖,如果當前有其他線程正持有該對象鎖,那麼新到的線程就必須等待,這樣也就保證了每次只有一個線程執行i++;操作。當然除了instance作爲對象外,我們還可以使用this對象(代表當前實例)或者當前類的class對象作爲鎖,如下代碼:

//this,當前實例對象鎖
synchronized(this){
    for(int j=0;j<1000000;j++){
        i++;
    }
}

//class對象鎖
synchronized(AccountingSync.class){
    for(int j=0;j<1000000;j++){
        i++;
    }
}

瞭解完synchronized的基本含義及其使用方式後,下面我們將進一步深入理解synchronized的底層實現原理。

synchronized底層語義原理

Java 虛擬機中的同步(Synchronization)基於進入和退出管程(Monitor)對象實現, 無論是顯式同步(有明確的 monitorenter 和 monitorexit 指令,即同步代碼塊)還是隱式同步都是如此。在 Java 語言中,同步用的最多的地方可能是被 synchronized 修飾的同步方法。同步方法 並不是由 monitorenter 和 monitorexit 指令來實現同步的,而是由方法調用指令讀取運行時常量池中方法的 ACC_SYNCHRONIZED 標誌來隱式實現的,關於這點,稍後詳細分析。下面先來了解一個概念Java對象頭,這對深入理解synchronized實現原理非常關鍵。

synchronized代碼塊底層原理

現在我們重新定義一個synchronized修飾的同步代碼塊,在代碼塊中操作共享變量i,如下:

public class SyncCodeBlock {

   public int i;

   public void syncTask(){
       //同步代碼庫
       synchronized (this){
           i++;
       }
   }
}

編譯上述代碼並使用javap反編譯後得到字節碼如下(這裏我們省略一部分沒有必要的信息):

Classfile /Users/zejian/Downloads/Java8_Action/src/main/java/com/zejian/concurrencys/SyncCodeBlock.class
  Last modified 2017-6-2; size 426 bytes
  MD5 checksum c80bc322c87b312de760942820b4fed5
  Compiled from "SyncCodeBlock.java"
public class com.zejian.concurrencys.SyncCodeBlock
  minor version: 0
  major version: 52
  flags: ACC_PUBLIC, ACC_SUPER
Constant pool:
  //........省略常量池中數據
  //構造函數
  public com.zejian.concurrencys.SyncCodeBlock();
    descriptor: ()V
    flags: ACC_PUBLIC
    Code:
      stack=1, locals=1, args_size=1
         0: aload_0
         1: invokespecial #1                  // Method java/lang/Object."<init>":()V
         4: return
      LineNumberTable:
        line 7: 0
  //===========主要看看syncTask方法實現================
  public void syncTask();
    descriptor: ()V
    flags: ACC_PUBLIC
    Code:
      stack=3, locals=3, args_size=1
         0: aload_0
         1: dup
         2: astore_1
         3: monitorenter  //注意此處,進入同步方法
         4: aload_0
         5: dup
         6: getfield      #2             // Field i:I
         9: iconst_1
        10: iadd
        11: putfield      #2            // Field i:I
        14: aload_1
        15: monitorexit   //注意此處,退出同步方法
        16: goto          24
        19: astore_2
        20: aload_1
        21: monitorexit //注意此處,退出同步方法
        22: aload_2
        23: athrow
        24: return
      Exception table:
      //省略其他字節碼.......
}
SourceFile: "SyncCodeBlock.java"

我們主要關注字節碼中的如下代碼:

3: monitorenter  //進入同步方法
//..........省略其他  
15: monitorexit   //退出同步方法
16: goto          24
//省略其他.......
21: monitorexit //退出同步方法

從字節碼中可知同步語句塊的實現使用的是monitorenter 和 monitorexit 指令,其中monitorenter指令指向同步代碼塊的開始位置,monitorexit指令則指明同步代碼塊的結束位置,當執行monitorenter指令時,當前線程將試圖獲取 objectref(即對象鎖) 所對應的 monitor 的持有權,當 objectref 的 monitor 的進入計數器爲 0,那線程可以成功取得 monitor,並將計數器值設置爲 1,取鎖成功。如果當前線程已經擁有 objectref 的 monitor 的持有權,那它可以重入這個 monitor (關於重入性稍後會分析),重入時計數器的值也會加 1。倘若其他線程已經擁有 objectref 的 monitor 的所有權,那當前線程將被阻塞,直到正在執行線程執行完畢,即monitorexit指令被執行,執行線程將釋放 monitor(鎖)並設置計數器值爲0 ,其他線程將有機會持有 monitor 。值得注意的是編譯器將會確保無論方法通過何種方式完成,方法中調用過的每條 monitorenter 指令都有執行其對應 monitorexit 指令,而無論這個方法是正常結束還是異常結束。爲了保證在方法異常完成時 monitorenter 和 monitorexit 指令依然可以正確配對執行,編譯器會自動產生一個異常處理器,這個異常處理器聲明可處理所有的異常,它的目的就是用來執行 monitorexit 指令。從字節碼中也可以看出多了一個monitorexit指令,它就是異常結束時被執行的釋放monitor 的指令。

synchronized方法底層原理

方法級的同步是隱式,即無需通過字節碼指令來控制的,它實現在方法調用和返回操作之中。JVM可以從方法常量池中的方法表結構(method_info Structure) 中的 ACC_SYNCHRONIZED 訪問標誌區分一個方法是否同步方法。當方法調用時,調用指令將會 檢查方法的 ACC_SYNCHRONIZED 訪問標誌是否被設置,如果設置了,執行線程將先持有monitor(虛擬機規範中用的是管程一詞), 然後再執行方法,最後再方法完成(無論是正常完成還是非正常完成)時釋放monitor。在方法執行期間,執行線程持有了monitor,其他任何線程都無法再獲得同一個monitor。如果一個同步方法執行期間拋 出了異常,並且在方法內部無法處理此異常,那這個同步方法所持有的monitor將在異常拋到同步方法之外時自動釋放。下面我們看看字節碼層面如何實現:

public class SyncMethod {

   public int i;

   public synchronized void syncTask(){
           i++;
   }
}

使用javap反編譯後的字節碼如下:

Classfile /Users/zejian/Downloads/Java8_Action/src/main/java/com/zejian/concurrencys/SyncMethod.class
  Last modified 2017-6-2; size 308 bytes
  MD5 checksum f34075a8c059ea65e4cc2fa610e0cd94
  Compiled from "SyncMethod.java"
public class com.zejian.concurrencys.SyncMethod
  minor version: 0
  major version: 52
  flags: ACC_PUBLIC, ACC_SUPER
Constant pool;

   //省略沒必要的字節碼
  //==================syncTask方法======================
  public synchronized void syncTask();
    descriptor: ()V
    //方法標識ACC_PUBLIC代表public修飾,ACC_SYNCHRONIZED指明該方法爲同步方法
    flags: ACC_PUBLIC, ACC_SYNCHRONIZED
    Code:
      stack=3, locals=1, args_size=1
         0: aload_0
         1: dup
         2: getfield      #2                  // Field i:I
         5: iconst_1
         6: iadd
         7: putfield      #2                  // Field i:I
        10: return
      LineNumberTable:
        line 12: 0
        line 13: 10
}
SourceFile: "SyncMethod.java"

從字節碼中可以看出,synchronized修飾的方法並沒有monitorenter指令和monitorexit指令,取得代之的確實是ACC_SYNCHRONIZED標識,該標識指明瞭該方法是一個同步方法,JVM通過該ACC_SYNCHRONIZED訪問標誌來辨別一個方法是否聲明爲同步方法,從而執行相應的同步調用。這便是synchronized鎖在同步代碼塊和同步方法上實現的基本原理。同時我們還必須注意到的是在Java早期版本中,synchronized屬於重量級鎖,效率低下,因爲監視器鎖(monitor)是依賴於底層的操作系統的Mutex Lock來實現的,而操作系統實現線程之間的切換時需要從用戶態轉換到核心態,這個狀態之間的轉換需要相對比較長的時間,時間成本相對較高,這也是爲什麼早期的synchronized效率低的原因。慶幸的是在Java 6之後Java官方對從JVM層面對synchronized較大優化,所以現在的synchronized鎖效率也優化得很不錯了,Java 6之後,爲了減少獲得鎖和釋放鎖所帶來的性能消耗,引入了輕量級鎖和偏向鎖,接下來我們將簡單瞭解一下Java官方在JVM層面對synchronized鎖的優化。

Java虛擬機對synchronized的優化

鎖的狀態總共有四種,無鎖狀態、偏向鎖、輕量級鎖和重量級鎖。隨着鎖的競爭,鎖可以從偏向鎖升級到輕量級鎖,再升級的重量級鎖,但是鎖的升級是單向的,也就是說只能從低到高升級,不會出現鎖的降級,關於重量級鎖,前面我們已詳細分析過,下面我們將介紹偏向鎖和輕量級鎖以及JVM的其他優化手段,這裏並不打算深入到每個鎖的實現和轉換過程更多地是闡述Java虛擬機所提供的每個鎖的核心優化思想,畢竟涉及到具體過程比較繁瑣,如需瞭解詳細過程可以查閱《深入理解Java虛擬機原理》。

偏向鎖

偏向鎖是Java 6之後加入的新鎖,它是一種針對加鎖操作的優化手段,經過研究發現,在大多數情況下,鎖不僅不存在多線程競爭,而且總是由同一線程多次獲得,因此爲了減少同一線程獲取鎖(會涉及到一些CAS操作,耗時)的代價而引入偏向鎖。偏向鎖的核心思想是,如果一個線程獲得了鎖,那麼鎖就進入偏向模式,此時Mark Word 的結構也變爲偏向鎖結構,當這個線程再次請求鎖時,無需再做任何同步操作,即獲取鎖的過程,這樣就省去了大量有關鎖申請的操作,從而也就提供程序的性能。所以,對於沒有鎖競爭的場合,偏向鎖有很好的優化效果,畢竟極有可能連續多次是同一個線程申請相同的鎖。但是對於鎖競爭比較激烈的場合,偏向鎖就失效了,因爲這樣場合極有可能每次申請鎖的線程都是不相同的,因此這種場合下不應該使用偏向鎖,否則會得不償失,需要注意的是,偏向鎖失敗後,並不會立即膨脹爲重量級鎖,而是先升級爲輕量級鎖。下面我們接着瞭解輕量級鎖。

輕量級鎖

倘若偏向鎖失敗,虛擬機並不會立即升級爲重量級鎖,它還會嘗試使用一種稱爲輕量級鎖的優化手段(1.6之後加入的),此時Mark Word 的結構也變爲輕量級鎖的結構。輕量級鎖能夠提升程序性能的依據是“對絕大部分的鎖,在整個同步週期內都不存在競爭”,注意這是經驗數據。需要了解的是,輕量級鎖所適應的場景是線程交替執行同步塊的場合,如果存在同一時間訪問同一鎖的場合,就會導致輕量級鎖膨脹爲重量級鎖。

自旋鎖

輕量級鎖失敗後,虛擬機爲了避免線程真實地在操作系統層面掛起,還會進行一項稱爲自旋鎖的優化手段。這是基於在大多數情況下,線程持有鎖的時間都不會太長,如果直接掛起操作系統層面的線程可能會得不償失,畢竟操作系統實現線程之間的切換時需要從用戶態轉換到核心態,這個狀態之間的轉換需要相對比較長的時間,時間成本相對較高,因此自旋鎖會假設在不久將來,當前的線程可以獲得鎖,因此虛擬機會讓當前想要獲取鎖的線程做幾個空循環(這也是稱爲自旋的原因),一般不會太久,可能是50個循環或100循環,在經過若干次循環後,如果得到鎖,就順利進入臨界區。如果還不能獲得鎖,那就會將線程在操作系統層面掛起,這就是自旋鎖的優化方式,這種方式確實也是可以提升效率的。最後沒辦法也就只能升級爲重量級鎖了。

鎖消除

消除鎖是虛擬機另外一種鎖的優化,這種優化更徹底,Java虛擬機在JIT編譯時(可以簡單理解爲當某段代碼即將第一次被執行時進行編譯,又稱即時編譯),通過對運行上下文的掃描,去除不可能存在共享資源競爭的鎖,通過這種方式消除沒有必要的鎖,可以節省毫無意義的請求鎖時間,如下StringBuffer的append是一個同步方法,但是在add方法中的StringBuffer屬於一個局部變量,並且不會被其他線程所使用,因此StringBuffer不可能存在共享資源競爭的情景,JVM會自動將其鎖消除。

/**
 * Created by zejian on 2017/6/4.
 * Blog : http://blog.csdn.net/javazejian [原文地址,請尊重原創]
 * 消除StringBuffer同步鎖
 */
public class StringBufferRemoveSync {

    public void add(String str1, String str2) {
        //StringBuffer是線程安全,由於sb只會在append方法中使用,不可能被其他線程引用
        //因此sb屬於不可能共享的資源,JVM會自動消除內部的鎖
        StringBuffer sb = new StringBuffer();
        sb.append(str1).append(str2);
    }

    public static void main(String[] args) {
        StringBufferRemoveSync rmsync = new StringBufferRemoveSync();
        for (int i = 0; i < 10000000; i++) {
            rmsync.add("abc", "123");
        }
    }

}

關於synchronized 可能需要了解的關鍵點

synchronized的可重入性

從互斥鎖的設計上來說,當一個線程試圖操作一個由其他線程持有的對象鎖的臨界資源時,將會處於阻塞狀態,但當一個線程再次請求自己持有對象鎖的臨界資源時,這種情況屬於重入鎖,請求將會成功,在java中synchronized是基於原子性的內部鎖機制,是可重入的,因此在一個線程調用synchronized方法的同時在其方法體內部調用該對象另一個synchronized方法,也就是說一個線程得到一個對象鎖後再次請求該對象鎖,是允許的,這就是synchronized的可重入性。如下:

public class AccountingSync implements Runnable{
    static AccountingSync instance=new AccountingSync();
    static int i=0;
    static int j=0;
    @Override
    public void run() {
        for(int j=0;j<1000000;j++){

            //this,當前實例對象鎖
            synchronized(this){
                i++;
                increase();//synchronized的可重入性
            }
        }
    }

    public synchronized void increase(){
        j++;
    }


    public static void main(String[] args) throws InterruptedException {
        Thread t1=new Thread(instance);
        Thread t2=new Thread(instance);
        t1.start();t2.start();
        t1.join();t2.join();
        System.out.println(i);
    }
}

線程中斷

正如中斷二字所表達的意義,在線程運行(run方法)中間打斷它,在Java中,提供了以下3個有關線程中斷的方法:

//中斷線程(實例方法)
public void Thread.interrupt();

//判斷線程是否被中斷(實例方法)
public boolean Thread.isInterrupted();

//判斷是否被中斷並清除當前中斷狀態(靜態方法)
public static boolean Thread.interrupted();

當一個線程處於被阻塞狀態或者試圖執行一個阻塞操作時,使用Thread.interrupt()方式中斷該線程,注意此時將會拋出一個InterruptedException的異常,同時中斷狀態將會被複位(由中斷狀態改爲非中斷狀態),如下代碼將演示該過程:

public class InterruputSleepThread3 {
    public static void main(String[] args) throws InterruptedException {
        Thread t1 = new Thread() {
            @Override
            public void run() {
                //while在try中,通過異常中斷就可以退出run循環
                try {
                    while (true) {
                        //當前線程處於阻塞狀態,異常必須捕捉處理,無法往外拋出
                        TimeUnit.SECONDS.sleep(2);
                    }
                } catch (InterruptedException e) {
                    System.out.println("Interruted When Sleep");
                    boolean interrupt = this.isInterrupted();
                    //中斷狀態被複位
                    System.out.println("interrupt:"+interrupt);
                }
            }
        };
        t1.start();
        TimeUnit.SECONDS.sleep(2);
        //中斷處於阻塞狀態的線程
        t1.interrupt();

        /**
         * 輸出結果:
           Interruted When Sleep
           interrupt:false
         */
    }
}

如上述代碼所示,我們創建一個線程,並在線程中調用了sleep方法從而使用線程進入阻塞狀態,啓動線程後,調用線程實例對象的interrupt方法中斷阻塞異常,並拋出InterruptedException異常,此時中斷狀態也將被複位。這裏有些人可能會詫異,爲什麼不用Thread.sleep(2000);而是用TimeUnit.SECONDS.sleep(2);其實原因很簡單,前者使用時並沒有明確的單位說明,而後者非常明確表達秒的單位,事實上後者的內部實現最終還是調用了Thread.sleep(2000);,但爲了編寫的代碼語義更清晰,建議使用TimeUnit.SECONDS.sleep(2);的方式,注意TimeUnit是個枚舉類型。ok~,除了阻塞中斷的情景,我們還可能會遇到處於運行期且非阻塞的狀態的線程,這種情況下,直接調用Thread.interrupt()中斷線程是不會得到任響應的,如下代碼,將無法中斷非阻塞狀態下的線程:

public class InterruputThread {
    public static void main(String[] args) throws InterruptedException {
        Thread t1=new Thread(){
            @Override
            public void run(){
                while(true){
                    System.out.println("未被中斷");
                }
            }
        };
        t1.start();
        TimeUnit.SECONDS.sleep(2);
        t1.interrupt();

        /**
         * 輸出結果(無限執行):
             未被中斷
             未被中斷
             未被中斷
             ......
         */
    }
}

雖然我們調用了interrupt方法,但線程t1並未被中斷,因爲處於非阻塞狀態的線程需要我們手動進行中斷檢測並結束程序,改進後代碼如下:

public class InterruputThread {
    public static void main(String[] args) throws InterruptedException {
        Thread t1=new Thread(){
            @Override
            public void run(){
                while(true){
                    //判斷當前線程是否被中斷
                    if (this.isInterrupted()){
                        System.out.println("線程中斷");
                        break;
                    }
                }

                System.out.println("已跳出循環,線程中斷!");
            }
        };
        t1.start();
        TimeUnit.SECONDS.sleep(2);
        t1.interrupt();

        /**
         * 輸出結果:
            線程中斷
            已跳出循環,線程中斷!
         */
    }
}

是的,我們在代碼中使用了實例方法isInterrupted判斷線程是否已被中斷,如果被中斷將跳出循環以此結束線程。綜合所述,可以簡單總結一下中斷兩種情況,一種是當線程處於阻塞狀態或者試圖執行一個阻塞操作時,我們可以使用實例方法interrupt()進行線程中斷,執行中斷操作後將會拋出interruptException異常(該異常必須捕捉無法向外拋出)並將中斷狀態復位,另外一種是當線程處於運行狀態時,我們也可調用實例方法interrupt()進行線程中斷,但同時必須手動判斷中斷狀態,並編寫中斷線程的代碼(其實就是結束run方法體的代碼)。有時我們在編碼時可能需要兼顧以上兩種情況,那麼就可以如下編寫:

public void run(){
    try {
    //判斷當前線程是否已中斷,注意interrupted方法是靜態的,執行後會對中斷狀態進行復位
    while (!Thread.interrupted()) {
        TimeUnit.SECONDS.sleep(2);
    }
    } catch (InterruptedException e) {

    }
}

中斷與synchronized

事實上線程的中斷操作對於正在等待獲取的鎖對象的synchronized方法或者代碼塊並不起作用,也就是對於synchronized來說,如果一個線程在等待鎖,那麼結果只有兩種,要麼它獲得這把鎖繼續執行,要麼它就保存等待,即使調用中斷線程的方法,也不會生效。演示代碼如下:

/**
 * Created by zejian on 2017/6/2.
 * Blog : http://blog.csdn.net/javazejian [原文地址,請尊重原創]
 */
public class SynchronizedBlocked implements Runnable{

    public synchronized void f() {
        System.out.println("Trying to call f()");
        while(true) // Never releases lock
            Thread.yield();
    }

    /**
     * 在構造器中創建新線程並啓動獲取對象鎖
     */
    public SynchronizedBlocked() {
        //該線程已持有當前實例鎖
        new Thread() {
            public void run() {
                f(); // Lock acquired by this thread
            }
        }.start();
    }
    public void run() {
        //中斷判斷
        while (true) {
            if (Thread.interrupted()) {
                System.out.println("中斷線程!!");
                break;
            } else {
                f();
            }
        }
    }


    public static void main(String[] args) throws InterruptedException {
        SynchronizedBlocked sync = new SynchronizedBlocked();
        Thread t = new Thread(sync);
        //啓動後調用f()方法,無法獲取當前實例鎖處於等待狀態
        t.start();
        TimeUnit.SECONDS.sleep(1);
        //中斷線程,無法生效
        t.interrupt();
    }
}

我們在SynchronizedBlocked構造函數中創建一個新線程並啓動獲取調用f()獲取到當前實例鎖,由於SynchronizedBlocked自身也是線程,啓動後在其run方法中也調用了f(),但由於對象鎖被其他線程佔用,導致t線程只能等到鎖,此時我們調用了t.interrupt();但並不能中斷線程。

等待喚醒機制與synchronized

所謂等待喚醒機制本篇主要指的是notify/notifyAll和wait方法,在使用這3個方法時,必須處於synchronized代碼塊或者synchronized方法中,否則就會拋出IllegalMonitorStateException異常,這是因爲調用這幾個方法前必須拿到當前對象的監視器monitor對象,也就是說notify/notifyAll和wait方法依賴於monitor對象,在前面的分析中,我們知道monitor 存在於對象頭的Mark Word 中(存儲monitor引用指針),而synchronized關鍵字可以獲取 monitor ,這也就是爲什麼notify/notifyAll和wait方法必須在synchronized代碼塊或者synchronized方法調用的原因。

synchronized (obj) {
       obj.wait();
       obj.notify();
       obj.notifyAll();         
 }

需要特別理解的一點是,與sleep方法不同的是wait方法調用完成後,線程將被暫停,但wait方法將會釋放當前持有的監視器鎖(monitor),直到有線程調用notify/notifyAll方法後方能繼續執行,而sleep方法只讓線程休眠並不釋放鎖。同時notify/notifyAll方法調用後,並不會馬上釋放監視器鎖,而是在相應的synchronized(){}/synchronized方法執行結束後才自動釋放鎖。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章