code.jam - Always Turn Left

這個題目要根據路徑來構建迷宮,相對比較難,要注意很多細節,我花了好半天改了又改又調試半天才搞定,還真是不容易,總結下來就是,分析問題之後即便有了思路也不要立刻動手寫程序,一定要把思路理的非常清晰之後再開始寫,磨刀不誤砍柴功,這樣其實是節省了時間。 Always Turn Left

Problem

You find yourself standing outside of a perfect maze. A maze is defined as "perfect" if it meets the following conditions:

  1. It is a rectangular grid of rooms, R rows by C columns.
  2. There are exactly two openings on the outside of the maze: the entrance and the exit. The entrance is always on the north wall, while the exit could be on any wall.
  3. There is exactly one path between any two rooms in the maze (that is, exactly one path that does not involve backtracking).

You decide to solve the perfect maze using the "always turn left" algorithm, which states that you take the leftmost fork at every opportunity. If you hit a dead end, you turn right twice (180 degrees clockwise) and continue. (If you were to stick out your left arm and touch the wall while following this algorithm, you'd solve the maze without ever breaking contact with the wall.) Once you finish the maze, you decide to go the extra step and solve it again (still always turning left), but starting at the exit and finishing at the entrance.

The path you take through the maze can be described with three characters: 'W' means to walk forward into the next room, 'L' means to turn left (or counterclockwise) 90 degrees, and 'R' means to turn right (or clockwise) 90 degrees. You begin outside the maze, immediately adjacent to the entrance, facing the maze. You finish when you have stepped outside the maze through the exit. For example, if the entrance is on the north and the exit is on the west, your path through the following maze would be WRWWLWWLWWLWLWRRWRWWWRWWRWLW:

If the entrance and exit were reversed such that you began outside the west wall and finished out the north wall, your path would be WWRRWLWLWWLWWLWWRWWRWWLW. Given your two paths through the maze (entrance to exit and exit to entrance), your code should return a description of the maze.

Input

The first line of input gives the number of cases, N. N test cases follow. Each case is a line formatted as

entrance_to_exit exit_to_entrance

All paths will be at least two characters long, consist only of the characters 'W', 'L', and 'R', and begin and end with 'W'.

Output

For each test case, output one line containing "Case #x:" by itself. The next R lines give a description of the R by C maze. There should be C characters in each line, representing which directions it is possible to walk from that room. Refer to the following legend:

Character   Can walk north?   Can walk south?   Can walk west?   Can walk east?  
1 Yes No No No
2 No Yes No No
3 Yes Yes No No
4 No No Yes No
5 Yes No Yes No
6 No Yes Yes No
7 Yes Yes Yes No
8 No No No Yes
9 Yes No No Yes
a No Yes No Yes
b Yes Yes No Yes
c No No Yes Yes
d Yes No Yes Yes
e No Yes Yes Yes
f Yes Yes Yes Yes

Limits

1 ≤ N ≤ 100.

Small dataset

2 ≤ len(entrance_to_exit) ≤ 100, 2 ≤ len(exit_to_entrance) ≤ 100.

Large dataset

2 ≤ len(entrance_to_exit) ≤ 10000, 2 ≤ len(exit_to_entrance) ≤ 10000.

Sample

Input
2 WRWWLWWLWWLWLWRRWRWWWRWWRWLW WWRRWLWLWWLWWLWWRWWRWWLW WW WW
Output
Case #1: ac5 386 9c7 e43 9c5 Case #2: 3
// leekun 2008.06.30

#include <iostream>

#include <string>

#include <fstream> 



using namespace std;



#define nouth 0

#define west  1

#define south 2

#define east  3

#define turnleft(dir) ((dir+1)%4)

#define turnright(dir) ((dir+3)%4)



ofstream outfile("B_large.out");



class grid

{

public:

	grid(int x = 0, int y = 0) : X(x), Y (y), next(0) {

		bwall[0] = 0; bwall[1] = 0; bwall[2] = 0; bwall[3] = 0;}

	bool bwall[4];

	grid * next;

	// int Direct;

	int X, Y;

};





string inttostring_bytarget(int num, string target)

{

    string ret = "";

    int B = target.length();

    if (num==0) return "0";

    while (num>0)

    {

        ret = target[num%B] + ret;

        num /= B;

    }

    return ret;

}



void drawmap(grid * map, int row, int columns)

{

    int i = 0;

    int maplen = row * columns;

    while (i < maplen)

    {

		if ((i%columns==0)&&(i>0))

        {

			cout<<endl; 

			outfile<<endl;

        }

        bool up = (i >= columns )? map[i-columns].bwall[south]: 0;

        bool down = (i+columns < row*columns)? map[i+columns].bwall[nouth]:0;

        bool left = (i%columns > 0)? map[i-1].bwall[east]: 0;

        bool right = (i%columns < columns-1)? map[i+1].bwall[west]: 0;



        int V = 

        (map[i].bwall[nouth] || up) + 

        (map[i].bwall[south] || down) * 2 + 

        (map[i].bwall[west] || left) * 4 +

        (map[i].bwall[east] || right) * 8;

        V = 15 - V;



        string S =  inttostring_bytarget(V, "0123456789abcdef");

        cout << S;

		outfile << S;

        i++;

    }

    cout << endl;

	outfile << endl;

}



int main(int argc, char *argv[])

{

    ifstream infile("B-large.in"); 



    int N = 0;

    infile >> N;

	int I = 1;



    while (N-- > 0)

    {

        string entrance_to_exit, exit_to_entrance;

        infile >> entrance_to_exit >> exit_to_entrance;



		// process the entrance_to_exit

		int p = 1;

		int q = 1;

		int Lenp = entrance_to_exit.length();

		int Lenq = exit_to_entrance.length();

		grid entrance(0, 0);

		grid *node = &entrance;

		int max_eage[4] = {0};

		int curdir = south;

		int pX = 0;

		int pY = 0;



		bool setexit_lock = false;

		int exitX  = 0, exitY = 0 , exitDir= curdir;



		while (1)

		{

			char C;

			if (p < Lenp-1) // loop 1

			{

				C = entrance_to_exit[p];

				p++;

			}

			else if (q < Lenq-1) // loop 2

			{

				// 只記錄一次出口位置

				if (!setexit_lock)

				{

					exitX = pX;

					exitY = pY;

					exitDir = curdir;

					setexit_lock = true;

					curdir = turnright(turnright(curdir));

				}

				C = exit_to_entrance[q];

				q++;

			}

			else

				break;



			// 向前走只改變當前座標

			if ('W' == C)

			{

				switch(curdir){

				case nouth: pY--;

					break;

				case south: pY++; 

					if(pY > max_eage[south]) 

						max_eage[south] = pY;

					break;

				case west: pX--; 

					if(pX < max_eage[west]) 

						max_eage[west] = pX;

					break;

				case east: pX++; 

					if(pX > max_eage[east]) 

						max_eage[east] = pX;

					break;

				}

				grid *newnode = new  grid(pX, pY);

				node->next = newnode;

				// node->Direct = curdir;

				node = newnode;

			}

			// 向左轉只是說明左邊有路走,僅此而已

			else if('L' == C) 

			{

				curdir = turnleft(curdir);

			}

			// 向右轉說明當前前方和左方都是牆

			else if ('R' == C)

			{

				node->bwall[curdir] = 1;

				node->bwall[turnleft(curdir)] = 1;

				curdir = turnright(curdir);

			}

		}



		// creat a map

		int rows = max_eage[south] - max_eage[nouth] + 1;

		int columns = max_eage[east] - max_eage[west] + 1;

		// 座標轉換差值

		int dx = 0 - max_eage[west];



		grid * map = new grid[rows * columns];

		grid * nextnode = &entrance;

		while (nextnode)

		{

			int position = nextnode->X + dx + nextnode->Y * columns;

			for (int i = 0; i<4; i++)

			{

				map[position].bwall[i] = map[position].bwall[i] || nextnode->bwall[i]; 

			}

			grid * t = nextnode;

			nextnode = nextnode->next;

			if (t != &entrance) delete t;

		}



		// 寫map邊界

		int k;

		for (k = 0; k < rows; k++)

		{

			map[k * columns].bwall[west] = 1;

			map[(k+1) * columns - 1].bwall[east]  =1;

		}

		for (k = 0; k < columns; k++)

		{

			map[k].bwall[nouth] = 1;

			map[rows * columns - 1 - k].bwall[south]  =1;

		}

		// 入口出口

		map[entrance.X + dx].bwall[nouth] = 0;

		map[exitX + dx + exitY*columns].bwall[exitDir] = 0;



		// drawmap

		cout << "Case #" << I << ": " << endl;

		outfile << "Case #" << I << ": " << endl;

		I++;

		drawmap(map, rows, columns);

		delete []map;

	}



	return 0;

}

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章