Java基礎之內存模型



轉載:http://www.importnew.com/18126.html

大家都知道,計算機在執行程序時,每條指令都是在CPU中執行的,而執行指令過程中,勢必涉及到數據的讀取和寫入。由於程序運行過程中的臨時數據是存放在主存(物理內存)當中的,這時就存在一個問題,由於CPU執行速度很快,而從內存讀取數據和向內存寫入數據的過程跟CPU執行指令的速度比起來要慢的多,因此如果任何時候對數據的操作都要通過和內存的交互來進行,會大大降低指令執行的速度。因此在CPU裏面就有了高速緩存。

也就是,當程序在運行過程中,會將運算需要的數據從主存複製一份到CPU的高速緩存當中,那麼CPU進行計算時就可以直接從它的高速緩存讀取數據和向其中寫入數據,當運算結束之後,再將高速緩存中的數據刷新到主存當中。舉個簡單的例子,比如下面的這段代碼:

當線程執行這個語句時,會先從主存當中讀取i的值,然後複製一份到高速緩存當中,然後CPU執行指令對i進行加1操作,然後將數據寫入高速緩存,最後將高速緩存中i最新的值刷新到主存當中。

這個代碼在單線程中運行是沒有任何問題的,但是在多線程中運行就會有問題了。在多核CPU中,每條線程可能運行於不同的CPU中,因此每個線程運行時有自己的高速緩存(對單核CPU來說,其實也會出現這種問題,只不過是以線程調度的形式來分別執行的)。本文我們以多核CPU爲例。

比如同時有2個線程執行這段代碼,假如初始時i的值爲0,那麼我們希望兩個線程執行完之後i的值變爲2。但是事實會是這樣嗎?

可能存在下面一種情況:初始時,兩個線程分別讀取i的值存入各自所在的CPU的高速緩存當中,然後線程1進行加1操作,然後把i的最新值1寫入到內存。此時線程2的高速緩存當中i的值還是0,進行加1操作之後,i的值爲1,然後線程2把i的值寫入內存。

最終結果i的值是1,而不是2。這就是著名的緩存一致性問題。通常稱這種被多個線程訪問的變量爲共享變量。

也就是說,如果一個變量在多個CPU中都存在緩存(一般在多線程編程時纔會出現),那麼就可能存在緩存不一致的問題。

爲了解決緩存不一致性問題,通常來說有以下2種解決方法:

1)通過在總線加LOCK#鎖的方式

2)通過緩存一致性協議

這2種方式都是硬件層面上提供的方式。

在早期的CPU當中,是通過在總線上加LOCK#鎖的形式來解決緩存不一致的問題。因爲CPU和其他部件進行通信都是通過總線來進行的,如果對總線加LOCK#鎖的話,也就是說阻塞了其他CPU對其他部件訪問(如內存),從而使得只能有一個CPU能使用這個變量的內存。比如上面例子中 如果一個線程在執行 i = i +1,如果在執行這段代碼的過程中,在總線上發出了LCOK#鎖的信號,那麼只有等待這段代碼完全執行完畢之後,其他CPU才能從變量i所在的內存讀取變量,然後進行相應的操作。這樣就解決了緩存不一致的問題。

但是上面的方式會有一個問題,由於在鎖住總線期間,其他CPU無法訪問內存,導致效率低下。

所以就出現了緩存一致性協議。最出名的就是Intel 的MESI協議,MESI協議保證了每個緩存中使用的共享變量的副本是一致的。它核心的思想是:當CPU寫數據時,如果發現操作的變量是共享變量,即在其他CPU中也存在該變量的副本,會發出信號通知其他CPU將該變量的緩存行置爲無效狀態,因此當其他CPU需要讀取這個變量時,發現自己緩存中緩存該變量的緩存行是無效的,那麼它就會從內存重新讀取。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章