live555峯哥的私房菜(一)------整體上對最簡單RtspServer的介紹

整體上對最簡單RtspServer的介紹

int main()
{
    TaskScheduler* scheduler;
    UsageEnvironment* env ;
    RTSPServer* rtspServer;
    ServerMediaSession* sms;
    //創建任務調用器
    scheduler = BasicTaskScheduler::createNew();
    //創建交互環境
    env = BasicUsageEnvironment::createNew(*scheduler);
    //創建RTSP服務器
    rtspServer = RTSPServer::createNew(*env,554);    //使用554端口
    if(rtspServer == NULL)
    {
        rtspServer = RTSPServer::createNew(*env,8554);   //554端口被佔用,就使用8554端口
    }
    //打印服務器地址
    *env << "Play streams from this server using the URL\n\t"
         << rtspServer->rtspURLPrefix() << "<filename>.\n";
    //創建session
    sms = createNewSMS(*env, "test.mpg");
    rtspServer->addServerMediaSession(sms);
    //添加其它文件對應的session...
    //進行事件循環
    env->taskScheduler().doEventLoop(); // does not return
    return 0;
}



介紹一下用到的四個類:

1、UsageEnvironment

UsageEnvironment 代表了整個系統運行的環境,它提供了錯誤記錄和錯誤報告的功能,無論哪一個類要輸出錯誤,就需要保存UsageEnvironment 的指針.

2、TaskScheduler

TaskScheduler 則提供了任務調度功能.整個程序的運行發動機就是它,它調度任務,執行任務(任務就是一個函數).TaskScheduler 由於在全局中只有一個,所以保存在了UsageEnvironment 中.而所有的類又都保存了UsageEnvironment 的指針,所以誰想把自己的任務加入調度中,那是很容易的.

3、RTSPServer

livemedia庫中的RTSPServer類(繼承自基類Medium)用於構建一個RTSP服務器,該類同時在其內部定義了一個RTSPClientSession類,用於處理單獨的客戶會話。

4、ServerMediaSession

livemedia庫中的ServerMediaSession類(繼承自基類Medium)用來處理會話中描述,它包含多個(音頻或視頻)的子會話描述(ServerMediaSubsession)。

任務循環體介紹

函數 env->taskScheduler().doEventLoop()中,看名字很明顯是一個消息循壞,執行到裏面後不停地轉圈,生命不息,轉圈不止。

函數原型

void BasicTaskScheduler0::doEventLoop(char* watchVariable) {
  // Repeatedly loop, handling readble sockets and timed events:
  while (1) {
    if (watchVariable != NULL && *watchVariable != 0) break;
    SingleStep();
  }
}
現在我們的疑問是SingleStep();到底幹了什麼?

void BasicTaskScheduler::SingleStep(unsigned maxDelayTime) 
{
  fd_set readSet = fReadSet; // make a copy for this select() call
  fd_set writeSet = fWriteSet; // ditto
  fd_set exceptionSet = fExceptionSet; // ditto
  //設置select時間
  DelayInterval const& timeToDelay = fDelayQueue.timeToNextAlarm();
  struct timeval tv_timeToDelay;
  tv_timeToDelay.tv_sec = timeToDelay.seconds();
  tv_timeToDelay.tv_usec = timeToDelay.useconds();
  // Very large "tv_sec" values cause select() to fail.
  // Don't make it any larger than 1 million seconds (11.5 days)
  const long MAX_TV_SEC = MILLION;
  if (tv_timeToDelay.tv_sec > MAX_TV_SEC) {
    tv_timeToDelay.tv_sec = MAX_TV_SEC;
  }
  // Also check our "maxDelayTime" parameter (if it's > 0):
  if (maxDelayTime > 0 &&
      (tv_timeToDelay.tv_sec > (long)maxDelayTime/MILLION ||
       (tv_timeToDelay.tv_sec == (long)maxDelayTime/MILLION &&
	tv_timeToDelay.tv_usec > (long)maxDelayTime%MILLION))) {
    tv_timeToDelay.tv_sec = maxDelayTime/MILLION;
    tv_timeToDelay.tv_usec = maxDelayTime%MILLION;
  }
//執行socket 的select 操作,以確定哪些socket 任務(handler)需要執行。
  int selectResult = select(fMaxNumSockets, &readSet, &writeSet, &exceptionSet, &tv_timeToDelay);
  if (selectResult < 0) {
#if defined(__WIN32__) || defined(_WIN32)
    int err = WSAGetLastError();
    // For some unknown reason, select() in Windoze sometimes fails with WSAEINVAL if
    // it was called with no entries set in "readSet".  If this happens, ignore it:
    if (err == WSAEINVAL && readSet.fd_count == 0) {
      err = EINTR;
      // To stop this from happening again, create a dummy socket:
      int dummySocketNum = socket(AF_INET, SOCK_DGRAM, 0);
      FD_SET((unsigned)dummySocketNum, &fReadSet);
    }
    if (err != EINTR) {
#else
    if (errno != EINTR && errno != EAGAIN) {
#endif
	// Unexpected error - treat this as fatal:
#if !defined(_WIN32_WCE)
	perror("BasicTaskScheduler::SingleStep(): select() fails");
#endif
	internalError();
      }
  }

  // Call the handler function for one readable socket:
  HandlerIterator iter(*fHandlers);
  HandlerDescriptor* handler;
  // To ensure forward progress through the handlers, begin past the last
  // socket number that we handled:                             											    //找到上次執行的SocketNum
  if (fLastHandledSocketNum >= 0) {
    while ((handler = iter.next()) != NULL) {
      if (handler->socketNum == fLastHandledSocketNum) break;
    }
    if (handler == NULL) {
      fLastHandledSocketNum = -1;
      iter.reset(); // start from the beginning instead
    }
  }     																		    //從找到的 handler 開始,找一個可以執行的 handler,不論其狀態是可讀,可寫,還是出錯,執行之。
  while ((handler = iter.next()) != NULL) {
    int sock = handler->socketNum; // alias
    int resultConditionSet = 0;
    if (FD_ISSET(sock, &readSet) && FD_ISSET(sock, &fReadSet)/*sanity check*/) resultConditionSet |= SOCKET_READABLE;
    if (FD_ISSET(sock, &writeSet) && FD_ISSET(sock, &fWriteSet)/*sanity check*/) resultConditionSet |= SOCKET_WRITABLE;
    if (FD_ISSET(sock, &exceptionSet) && FD_ISSET(sock, &fExceptionSet)/*sanity check*/) resultConditionSet |= SOCKET_EXCEPTION;
    if ((resultConditionSet&handler->conditionSet) != 0 && handler->handlerProc != NULL) {
      fLastHandledSocketNum = sock;
          // Note: we set "fLastHandledSocketNum" before calling the handler,
          // in case the handler calls "doEventLoop()" reentrantly.
      (*handler->handlerProc)(handler->clientData, resultConditionSet);
      break;
    }
  }
  //如果尋找完了依然沒有執行任何 handle ,則從頭再找。 
  if (handler == NULL && fLastHandledSocketNum >= 0) {
    // We didn't call a handler, but we didn't get to check all of them,
    // so try again from the beginning:
    iter.reset();
    while ((handler = iter.next()) != NULL) {
      int sock = handler->socketNum; // alias
      int resultConditionSet = 0;
      if (FD_ISSET(sock, &readSet) && FD_ISSET(sock, &fReadSet)/*sanity check*/) resultConditionSet |= SOCKET_READABLE;
      if (FD_ISSET(sock, &writeSet) && FD_ISSET(sock, &fWriteSet)/*sanity check*/) resultConditionSet |= SOCKET_WRITABLE;
      if (FD_ISSET(sock, &exceptionSet) && FD_ISSET(sock, &fExceptionSet)/*sanity check*/) resultConditionSet |= SOCKET_EXCEPTION;
      if ((resultConditionSet&handler->conditionSet) != 0 && handler->handlerProc != NULL) {
	fLastHandledSocketNum = sock;
	    // Note: we set "fLastHandledSocketNum" before calling the handler,
            // in case the handler calls "doEventLoop()" reentrantly.
	(*handler->handlerProc)(handler->clientData, resultConditionSet);
	break;
      }
    }
    if (handler == NULL) fLastHandledSocketNum = -1;//because we didn't call a handler
  }

  // Also handle any newly-triggered event (Note that we do this *after* calling a socket handler,
  // in case the triggered event handler modifies The set of readable sockets.)										    //響應事件 
  if (fTriggersAwaitingHandling != 0) {
    if (fTriggersAwaitingHandling == fLastUsedTriggerMask) {
      // Common-case optimization for a single event trigger:
      fTriggersAwaitingHandling = 0;
      if (fTriggeredEventHandlers[fLastUsedTriggerNum] != NULL) { 												// 執行一個事件處理函數
	(*fTriggeredEventHandlers[fLastUsedTriggerNum])(fTriggeredEventClientDatas[fLastUsedTriggerNum]);
      }
    } else {
      // Look for an event trigger that needs handling (making sure that we make forward progress through all possible triggers):			        //尋找一個執行的事件
      unsigned i = fLastUsedTriggerNum;
      EventTriggerId mask = fLastUsedTriggerMask;

      do {
	i = (i+1)%MAX_NUM_EVENT_TRIGGERS;
	mask >>= 1;
	if (mask == 0) mask = 0x80000000;

	if ((fTriggersAwaitingHandling&mask) != 0) {
	  fTriggersAwaitingHandling &=~ mask;
	  if (fTriggeredEventHandlers[i] != NULL) {														//執行一個事件處理函數
	    (*fTriggeredEventHandlers[i])(fTriggeredEventClientDatas[i]);
	  }

	  fLastUsedTriggerMask = mask;
	  fLastUsedTriggerNum = i;
	  break;
	}
      } while (i != fLastUsedTriggerNum);
    }
  }
  //執行一個最迫切的延遲任務。
  // Also handle any delayed event that may have come due.
  fDelayQueue.handleAlarm();
}

由上面代碼可知,SingleStep()執行以下四步: 

1爲所有需要操作的socket 執行select 。 
2找出第一個應執行的socket 任務(handler) 並執行之。 
3找到第一個應響應的事件,並執行之。 
4找到第一個應執行的延遲任務並執行之。 

換言之,它只是任務調度的一個方法,該方法找到最需要執行的任務並執行之。




發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章