圖片相似度(漢明距離)

Google、Baidu 等搜索引擎相繼推出了以圖搜圖的功能,測試了下效果還不錯~ 那這種技術的原理是什麼呢?計算機怎麼知道兩張圖片相似呢?

根據Neal Krawetz博士的解釋,原理非常簡單易懂。我們可以用一個快速算法,就達到基本的效果。

這裏的關鍵技術叫做”感知哈希算法”(Perceptual hash algorithm),它的作用是對每張圖片生成一個”指紋”(fingerprint)字符串,然後比較不同圖片的指紋。結果越接近,就說明圖片越相似。

下面是一個最簡單的實現:

第一步,縮小尺寸。

將圖片縮小到8x8的尺寸,總共64個像素。這一步的作用是去除圖片的細節,只保留結構、明暗等基本信息,摒棄不同尺寸、比例帶來的圖片差異。

第二步,簡化色彩。

將縮小後的圖片,轉爲64級灰度。也就是說,所有像素點總共只有64種顏色。

第三步,計算平均值。

計算所有64個像素的灰度平均值。

第四步,比較像素的灰度。

將每個像素的灰度,與平均值進行比較。大於或等於平均值,記爲1;小於平均值,記爲0。

第五步,計算哈希值。

將上一步的比較結果,組合在一起,就構成了一個64位的整數,這就是這張圖片的指紋。組合的次序並不重要,只要保證所有圖片都採用同樣次序就行了。

= = 8f373714acfcf4d0

得到指紋以後,就可以對比不同的圖片,看看64位中有多少位是不一樣的。在理論上,這等同於計算”漢明距離”(Hamming distance)。如果不相同的數據位不超過5,就說明兩張圖片很相似;如果大於10,就說明這是兩張不同的圖片。

具體的代碼實現,可以參見Wote用python語言寫的imgHash.py。代碼很短,只有53行。使用的時候,第一個參數是基準圖片,第二個參數是用來比較的其他圖片所在的目錄,返回結果是兩張圖片之間不相同的數據位數量(漢明距離)。

這種算法的優點是簡單快速,不受圖片大小縮放的影響,缺點是圖片的內容不能變更。如果在圖片上加幾個文字,它就認不出來了。所以,它的最佳用途是根據縮略圖,找出原圖。

實際應用中,往往採用更強大的pHash算法和SIFT算法,它們能夠識別圖片的變形。只要變形程度不超過25%,它們就能匹配原圖。這些算法雖然更復雜,但是原理與上面的簡便算法是一樣的,就是先將圖片轉化成Hash字符串,然後再進行比較。

下面我們來看下上述理論用java來做一個DEMO版的具體實現:

import java.awt.Graphics2D;
import java.awt.color.ColorSpace;
import java.awt.image.BufferedImage;
import java.awt.image.ColorConvertOp;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.InputStream;

import javax.imageio.ImageIO;
/*
* pHash-like image hash.
* Author: Elliot Shepherd ([email protected]
* Based On: http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
*/
public class ImagePHash {

private int size = 32;
private int smallerSize = 8;

public ImagePHash() {
initCoefficients();
}

public ImagePHash(int size, int smallerSize) {
this.size = size;
this.smallerSize = smallerSize;

   initCoefficients();

}

public int distance(String s1, String s2) {
int counter = 0;
for (int k = 0; k < s1.length();k++) {
if(s1.charAt(k) != s2.charAt(k)) {
counter++;
}
}
return counter;
}

// Returns a ‘binary string’ (like. 001010111011100010) which is easy to do a hamming distance on.
public String getHash(InputStream is) throws Exception {
BufferedImage img = ImageIO.read(is);

   /* 1. Reduce size. 
    * Like Average Hash, pHash starts with a small image. 
    * However, the image is larger than 8x8; 32x32 is a good size. 
    * This is really done to simplify the DCT computation and not 
    * because it is needed to reduce the high frequencies.
    */
   img = resize(img, size, size);

   /* 2. Reduce color. 
    * The image is reduced to a grayscale just to further simplify 
    * the number of computations.
    */
   img = grayscale(img);

   double[][] vals = new double[size][size];

   for (int x = 0; x < img.getWidth(); x++) {
       for (int y = 0; y < img.getHeight(); y++) {
           vals[x][y] = getBlue(img, x, y);
       }
   }

   /* 3. Compute the DCT. 
    * The DCT separates the image into a collection of frequencies 
    * and scalars. While JPEG uses an 8x8 DCT, this algorithm uses 
    * a 32x32 DCT.
    */
   long start = System.currentTimeMillis();
   double[][] dctVals = applyDCT(vals);
   System.out.println("DCT: " + (System.currentTimeMillis() - start));

   /* 4. Reduce the DCT. 
    * This is the magic step. While the DCT is 32x32, just keep the 
    * top-left 8x8. Those represent the lowest frequencies in the 
    * picture.
    */
   /* 5. Compute the average value. 
    * Like the Average Hash, compute the mean DCT value (using only 
    * the 8x8 DCT low-frequency values and excluding the first term 
    * since the DC coefficient can be significantly different from 
    * the other values and will throw off the average).
    */
   double total = 0;

   for (int x = 0; x < smallerSize; x++) {
       for (int y = 0; y < smallerSize; y++) {
           total += dctVals[x][y];
       }
   }
   total -= dctVals[0][0];

   double avg = total / (double) ((smallerSize * smallerSize) - 1);

   /* 6. Further reduce the DCT. 
    * This is the magic step. Set the 64 hash bits to 0 or 1 
    * depending on whether each of the 64 DCT values is above or 
    * below the average value. The result doesn't tell us the 
    * actual low frequencies; it just tells us the very-rough 
    * relative scale of the frequencies to the mean. The result 
    * will not vary as long as the overall structure of the image 
    * remains the same; this can survive gamma and color histogram 
    * adjustments without a problem.
    */
   String hash = "";

   for (int x = 0; x < smallerSize; x++) {
       for (int y = 0; y < smallerSize; y++) {
           if (x != 0 && y != 0) {
               hash += (dctVals[x][y] > avg?"1":"0");
           }
       }
   }

   return hash;

}

private BufferedImage resize(BufferedImage image, int width, int height) {
BufferedImage resizedImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
Graphics2D g = resizedImage.createGraphics();
g.drawImage(image, 0, 0, width, height, null);
g.dispose();
return resizedImage;
}

private ColorConvertOp colorConvert = new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null);

private BufferedImage grayscale(BufferedImage img) {
colorConvert.filter(img, img);
return img;
}

private static int getBlue(BufferedImage img, int x, int y) {
return (img.getRGB(x, y)) & 0xff;
}

// DCT function stolen from http://stackoverflow.com/questions/4240490/problems-with-dct-and-idct-algorithm-in-java

private double[] c;
private void initCoefficients() {
c = new double[size];

   for (int i=1;i<size;i++) {
       c[i]=1;
   }
   c[0]=1/Math.sqrt(2.0);

}

private double[][] applyDCT(double[][] f) {
int N = size;

   double[][] F = new double[N][N];
   for (int u=0;u<N;u++) {
     for (int v=0;v<N;v++) {
       double sum = 0.0;
       for (int i=0;i<N;i++) {
         for (int j=0;j<N;j++) {
           sum+=Math.cos(((2*i+1)/(2.0*N))*u*Math.PI)*Math.cos(((2*j+1)/(2.0*N))*v*Math.PI)*(f[i][j]);
         }
       }
       sum*=((c[u]*c[v])/4.0);
       F[u][v] = sum;
     }
   }
   return F;

}

public static void main(String[] args) {

   ImagePHash p = new ImagePHash();
   String image1;
   String image2;
   try {
       image1 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/1.jpg")));
       image2 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/1.jpg")));
       System.out.println("1:1 Score is " + p.distance(image1, image2));
       image1 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/1.jpg")));
       image2 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/2.jpg")));
       System.out.println("1:2 Score is " + p.distance(image1, image2));
       image1 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/1.jpg")));
       image2 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/3.jpg")));
       System.out.println("1:3 Score is " + p.distance(image1, image2));
       image1 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/2.jpg")));
       image2 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/3.jpg")));
       System.out.println("2:3 Score is " + p.distance(image1, image2));

       image1 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/4.jpg")));
       image2 = p.getHash(new FileInputStream(new File("C:/Users/june/Desktop/5.jpg")));
       System.out.println("4:5 Score is " + p.distance(image1, image2));

   } catch (FileNotFoundException e) {
       e.printStackTrace();
   } catch (Exception e) {
       e.printStackTrace();
   }

}
}

運行結果爲:

DCT: 163
DCT: 158
1:1 Score is 0
DCT: 168
DCT: 164
1:2 Score is 4
DCT: 156
DCT: 156
1:3 Score is 3
DCT: 157
DCT: 157
2:3 Score is 1
DCT: 157
DCT: 156
4:5 Score is 21
說明:其中1,2,3是3張非常相似的圖片,圖片分別加了不同的文字水印,肉眼分辨的不是太清楚,下面會有附圖,4、5是兩張差異很大的圖,圖你可以隨便找來測試,這兩張我就不上傳了。

結果說明:漢明距離越大表明圖片差異越大,如果不相同的數據位不超過5,就說明兩張圖片很相似;如果大於10,就說明這是兩張不同的圖片。從結果可以看到1、2、3是相似圖片,4、5差異太大,是兩張不同的圖片。

附:圖1、2、3

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章