2410下DMA驅動源碼分析

首先我們由 kconfig makefile 來獲取 DMA 方面相關文件 ( 即源碼 ):

  Arch/arm/plat-s3c24xx/Dma.c

  Arch/arm/mach-s3c2410/Dma.c

  以上兩個就是操作 DMA 的核心文件 . 我們會逐個的來分析 .

 

先看初始化函數 , 哪些是初始化函數呢 ? 就是哪些通過 module_init, core_initcall, arch_initcall 等聲明的函數 .

首先在 arch/arm/mach-s3c2410/s3c2410.c 下有個初始化函數 .

arch/arm/mach-s3c2410/s3c2410.c:

static int __init s3c2410_core_init(void)

{

       return sysdev_class_register(&s3c2410_sysclass);   // 註冊一個 class

}

 

core_initcall(s3c2410_core_init);

我們以後會看到 , 後面的 DMA 設備及 DMA 驅動都會註冊到該類下面 .

arch/arm/mach-s3c2410/s3c2410.c:

struct sysdev_class s3c2410_sysclass = {

       set_kset_name("s3c2410-core"),

};

很明顯 , 實際上該類並沒有其他什麼操作 , 只是爲了讓 DMA 設備和驅動都註冊到這個類下面 , 以使對方可以互相找的到 .

接着在 arch/arm/plat-s3c24xx/Dma.c 下也註冊了一個類

arch/arm/plat-s3c24xx/Dma.c:

static int __init s3c24xx_dma_sysclass_init(void)

{

       int ret = sysdev_class_register(&dma_sysclass);    // 註冊的類

 

       if (ret != 0)

              printk(KERN_ERR "dma sysclass registration failed/n");

 

       return ret;

}

 

struct sysdev_class dma_sysclass = {

       set_kset_name("s3c24xx-dma"),

       .suspend = s3c2410_dma_suspend,   

       .resume          = s3c2410_dma_resume,

};

後面我們會看到這 2 個類是如何使用的 . 其中的 dma_sysclass 還有 suspend resume 的操作 , 這些都是電源管理方面的東西 , 我們這裏就不分析了 .

接着看在 arch/arm/mach-s3c2410/Dma.c 下注冊了 DMA 的驅動程序

arch/arm/mach-s3c2410/Dma.c:

#if defined(CONFIG_CPU_S3C2410)    /* 我們以 2410 爲例 */

static struct sysdev_driver s3c2410_dma_driver = {

       .add = s3c2410_dma_add, 

};

 

static int __init s3c2410_dma_drvinit(void)

{

    // 註冊驅動 , s3c2410_dma_driver 註冊到 s3c2410_sysclass 類下

       return sysdev_driver_register(&s3c2410_sysclass, &s3c2410_dma_driver); 

}

 

arch_initcall(s3c2410_dma_drvinit);

#endif

可以看到這個函數就是把 DMA 的驅動程序註冊到 s3c2410_sysclass 的類下面 , 後面我們會看到 DMA 設備是如何找到整個驅動並調用驅動的 add 函數的 .

Drivers/base/sys.c:

int sysdev_driver_register(struct sysdev_class * cls,

                        struct sysdev_driver * drv)

{

       down(&sysdev_drivers_lock);

       if (cls && kset_get(&cls->kset)) {

              list_add_tail(&drv->entry, &cls->drivers);  // 把驅動註冊到類下面的 drivers list

 

              /* If devices of this class already exist, tell the driver */

              if (drv->add) {  // 如果驅動有 add 函數的話

                     struct sys_device *dev;

                     list_for_each_entry(dev, &cls->kset.list, kobj.entry)

                            drv->add(dev);   // 爲該類下的每個設備調用驅動的 add 函數 .

              }

       } else

              list_add_tail(&drv->entry, &sysdev_drivers); // 把驅動註冊到類下面的 drivers list

       up(&sysdev_drivers_lock);

       return 0;

}

通過上面這個函數 , 我們就看到了 s3c2410_dma_driver 是如何註冊進 s3c2410_sysclass 類的 , 即就是把 s3c2410_dma_driver 掛到 s3c2410_sysclass 下的 drivers 列表下 .

接着我們來看 DMA 設備的註冊了 .

Arch/arm/mach-s3c2410/s3c2410.c:

int __init s3c2410_init(void)

{

       printk("S3C2410: Initialising architecture/n");

 

       return sysdev_register(&s3c2410_sysdev);   // 註冊設備了

}

 

static struct sys_device s3c2410_sysdev = {

       .cls         = &s3c2410_sysclass,

};

這個函數註冊了一個系統設備 , 我們看到 , 其實這是個虛擬設備 ( 其實根本就不是個設備 ), 它僅僅是爲了要觸發 dma 驅動的那個 add 函數 , 所有的 DMA 設備會在那個時候纔會真正的註冊 . 至於這個函數是怎麼調用的問題 , 就由讀者自己去分析吧 J , 不過我記得我有文章分析過的哦 .

Drivers/base/sys.c:

int sysdev_register(struct sys_device * sysdev)

{

       int error;

       struct sysdev_class * cls = sysdev->cls;

 

       if (!cls)

              return -EINVAL;

 

       /* Make sure the kset is set */

       sysdev->kobj.kset = &cls->kset;

 

       /* But make sure we point to the right type for sysfs translation */

       sysdev->kobj.ktype = &ktype_sysdev;

       error = kobject_set_name(&sysdev->kobj, "%s%d",

                       kobject_name(&cls->kset.kobj), sysdev->id);

       if (error)

              return error;

 

       pr_debug("Registering sys device '%s'/n", kobject_name(&sysdev->kobj));

 

       /* Register the object */

       error = kobject_register(&sysdev->kobj);

 

       if (!error) {

              struct sysdev_driver * drv;

 

              down(&sysdev_drivers_lock);

              /* Generic notification is implicit, because it's that

                * code that should have called us.

                */

           // 對於我們分析 DMA 來講 , 更關心的是下面這段代碼

              /* Notify global drivers */

              // 調用所有全局的 sysdev_drivers

list_for_each_entry(drv, &sysdev_drivers, entry) {

                     if (drv->add)

                            drv->add(sysdev);

              }

 

              /* Notify class auxillary drivers */

        // 接着調用具體 class 下面的驅動

              list_for_each_entry(drv, &cls->drivers, entry) {

                     if (drv->add)

                            drv->add(sysdev);   // 驅動的 add 函數 .

              }

              up(&sysdev_drivers_lock);

       }

       return error;

}

我們可以看到 s3c2410_sysdev 的類就是 s3c2410_sysclass, 所以這裏找到的驅動就是前面我們註冊進 s3c2410_sysclass dma 驅動 , 因此這裏的 add 函數就是 s3c2410_dma_add .

Arch/arm/mach-s3c2410/dma.c:

static int s3c2410_dma_add(struct sys_device *sysdev)

{

       s3c2410_dma_init();   //DMA 初始化

       s3c24xx_dma_order_set(&s3c2410_dma_order); 

       return s3c24xx_dma_init_map(&s3c2410_dma_sel);

}

真正的 DMA 方面的操作就從這個函數開始了 . 我們一個個函數來看 .

Arch/arm/plat-s3c24xx/dma.c:

int s3c2410_dma_init(void)

{

       return s3c24xx_dma_init(4, IRQ_DMA0, 0x40);

}

我們來看下參數 , 第一個參數代表 dma channel ( 參考 2410 data sheet), 第二個參數是 dma 的中斷號 , 第三個參數是每個 channel 對應的寄存器基地址與前一個 channel 的寄存器的基地址的偏移 , 即如果第一個 channel 的第一個寄存器的地址是 0x4b000000 則第二個 channel 的第一個寄存器的地址是 0x4b000040,

  接着看

Arch/arm/plat-s3c24xx/dma.c:

int __init s3c24xx_dma_init(unsigned int channels, unsigned int irq,

                         unsigned int stride)

{

       struct s3c2410_dma_chan *cp;   // 每個 channel 都由個 s3c2410_dma_chan 表示

       int channel;

       int ret;

 

       printk("S3C24XX DMA Driver, (c) 2003-2004,2006 Simtec Electronics/n");

 

       dma_channels = channels;   // 保存 channel 的數量

 

    // 把所有 channel 的所有寄存器地址由實地址轉換成虛擬地址 .

    // 我們驅動中使用的都是虛擬地址 .

       dma_base = ioremap(S3C24XX_PA_DMA, stride * channels); 

       if (dma_base == NULL) {

              printk(KERN_ERR "dma failed to remap register block/n");

              return -ENOMEM;

       }

    // 創建一個高速緩衝對象 , 具體可參考 linux 設備驅動程序 III 的第 8

       dma_kmem = kmem_cache_create("dma_desc",

                                 sizeof(struct s3c2410_dma_buf), 0,

                                 SLAB_HWCACHE_ALIGN,

                                 s3c2410_dma_cache_ctor, NULL);

 

       if (dma_kmem == NULL) {

              printk(KERN_ERR "dma failed to make kmem cache/n");

              ret = -ENOMEM;

              goto err;

       }

   

    // 爲每個 channel 初始化 .

       for (channel = 0; channel < channels;  channel++) {

              cp = &s3c2410_chans[channel];    // 全局變量保存每個 channel 的信息 .

 

              memset(cp, 0, sizeof(struct s3c2410_dma_chan));

 

              /* dma channel irqs are in order.. */

              cp->number = channel;   //channel

              cp->irq    = channel + irq;  // channel 的中斷號

              cp->regs   = dma_base + (channel * stride);   // channel 的寄存器基地址

 

              /* point current stats somewhere */

              cp->stats  = &cp->stats_store;    //channel 狀態

              cp->stats_store.timeout_shortest = LONG_MAX;

 

              /* basic channel configuration */

 

              cp->load_timeout = 1<<18;

 

              printk("DMA channel %d at %p, irq %d/n",

                     cp->number, cp->regs, cp->irq);

       }

 

       return 0;

 

  err:

       kmem_cache_destroy(dma_kmem);

       iounmap(dma_base);

       dma_base = NULL;

       return ret;

}

這個函數就是對每個 channel 進行初始化 , 並把每個 channel 的相關信息保存起來供以後的操作使用 .

接着看下一個函數 :

Arch/arm/plat-s3c24xx/dma.c:

int __init s3c24xx_dma_order_set(struct s3c24xx_dma_order *ord)

{

       struct s3c24xx_dma_order *nord = dma_order;   //dma_order 是個全局指針

 

   // 分配內存

       if (nord == NULL)

              nord = kmalloc(sizeof(struct s3c24xx_dma_order), GFP_KERNEL);

 

       if (nord == NULL) {

              printk(KERN_ERR "no memory to store dma channel order/n");

              return -ENOMEM;

       }

 

    // 保存 ord 信息

       dma_order = nord;

       memcpy(nord, ord, sizeof(struct s3c24xx_dma_order));

       return 0;

}

這個函數主要是分配了一個內存用來保存 order 信息 , 我們來看傳進來的參數

Arch/arm/mach-s3c2410/dma.c:

static struct s3c24xx_dma_order __initdata s3c2410_dma_order = {

       .channels = {

              [DMACH_SDI]     = {

                     .list  = {

                            [0]   = 3 | DMA_CH_VALID,

                            [1]   = 2 | DMA_CH_VALID,

                            [2]   = 0 | DMA_CH_VALID,

                     },

              },

              [DMACH_I2S_IN]       = {

                     .list  = {

                            [0]   = 1 | DMA_CH_VALID,

                            [1]   = 2 | DMA_CH_VALID,

                     },

              },

       },

};

注意這個變量用 __initdata 定義了 , 因此它只在初始化的時候存在 , 所以我們有必要分配一塊內存來保存它的信息 . 這也是上面那個函數的作用 , 那這個 s3c2410_dma_order 到底有什麼作用呢 , 我們看這個結構的解釋

Include/asm-arm/plat-s3c24xx/dma.h::

/* struct s3c24xx_dma_order

  *

  * information provided by either the core or the board to give the

  * dma system a hint on how to allocate channels

*/

// 註釋說的很明確了吧 , 就是用來指導系統如何分配 dma channel, 因爲 2410 下的 4 channel 的源跟目的並不是所有的外設都可以使用的 .

struct s3c24xx_dma_order {

       struct s3c24xx_dma_order_ch      channels[DMACH_MAX];

};

看完了 s3c24xx_dma_order_set, 我們接着看 s3c24xx_dma_init_map

Arch/arm/plat-s3c24xx/dma.c:

int __init s3c24xx_dma_init_map(struct s3c24xx_dma_selection *sel)

{

       struct s3c24xx_dma_map *nmap;

       size_t map_sz = sizeof(*nmap) * sel->map_size;

       int ptr;

 

       nmap = kmalloc(map_sz, GFP_KERNEL);  // 分配內存

       if (nmap == NULL)

              return -ENOMEM;

 

       // 保存信息

       memcpy(nmap, sel->map, map_sz);

       memcpy(&dma_sel, sel, sizeof(*sel));

 

       dma_sel.map = nmap;

 

    // 檢查是否正確

       for (ptr = 0; ptr < sel->map_size; ptr++)

              s3c24xx_dma_check_entry(nmap+ptr, ptr);

 

       return 0;

}

這個函數和 s3c24xx_dma_order_set 的作用一樣 , 也是先分配一塊內存然後在保存信息 . 我們來看參數 :

Arch/arm/mach-s3c2410/dma.c:

static struct s3c24xx_dma_selection __initdata s3c2410_dma_sel = {

       .select            = s3c2410_dma_select,

       .dcon_mask    = 7 << 24,

       .map              = s3c2410_dma_mappings,

       .map_size       = ARRAY_SIZE(s3c2410_dma_mappings),

};

呵呵也是用 __initdata 定義的 , 難怪要重新分配內存並保存起來 , 那這些是什麼信息呢 , 我們看到主要就是個 map, 我們接着來看這個 map 中到底存了些什麼東西 .

Arch/arm/mach-s3c2410/dma.c:

static struct s3c24xx_dma_map __initdata s3c2410_dma_mappings[] = {

       [DMACH_XD0] = {

              .name            = "xdreq0",

              .channels[0]   = S3C2410_DCON_CH0_XDREQ0 | DMA_CH_VALID,

       },

       [DMACH_XD1] = {

              .name            = "xdreq1",

              .channels[1]   = S3C2410_DCON_CH1_XDREQ1 | DMA_CH_VALID,

       },

       [DMACH_SDI] = {

              .name            = "sdi",

              .channels[0]   = S3C2410_DCON_CH0_SDI | DMA_CH_VALID,

              .channels[2]   = S3C2410_DCON_CH2_SDI | DMA_CH_VALID,

              .channels[3]   = S3C2410_DCON_CH3_SDI | DMA_CH_VALID,

              .hw_addr.to    = S3C2410_PA_IIS + S3C2410_IISFIFO,

              .hw_addr.from       = S3C2410_PA_IIS + S3C2410_IISFIFO,

       },

       [DMACH_SPI0] = {

              .name            = "spi0",

              .channels[1]   = S3C2410_DCON_CH1_SPI | DMA_CH_VALID,

              .hw_addr.to    = S3C2410_PA_SPI + S3C2410_SPTDAT,

              .hw_addr.from       = S3C2410_PA_SPI + S3C2410_SPRDAT,

       },

       [DMACH_SPI1] = {

              .name            = "spi1",

              .channels[3]   = S3C2410_DCON_CH3_SPI | DMA_CH_VALID,

              .hw_addr.to    = S3C2410_PA_SPI + 0x20 + S3C2410_SPTDAT,

              .hw_addr.from       = S3C2410_PA_SPI + 0x20 + S3C2410_SPRDAT,

       },

       [DMACH_UART0] = {

              .name            = "uart0",

              .channels[0]   = S3C2410_DCON_CH0_UART0 | DMA_CH_VALID,

              .hw_addr.to    = S3C2410_PA_UART0 + S3C2410_UTXH,

              .hw_addr.from       = S3C2410_PA_UART0 + S3C2410_URXH,

       },

       [DMACH_UART1] = {

              .name            = "uart1",

              .channels[1]   = S3C2410_DCON_CH1_UART1 | DMA_CH_VALID,

              .hw_addr.to    = S3C2410_PA_UART1 + S3C2410_UTXH,

              .hw_addr.from       = S3C2410_PA_UART1 + S3C2410_URXH,

       },

         [DMACH_UART2] = {

              .name            = "uart2",

              .channels[3]   = S3C2410_DCON_CH3_UART2 | DMA_CH_VALID,

              .hw_addr.to    = S3C2410_PA_UART2 + S3C2410_UTXH,

              .hw_addr.from       = S3C2410_PA_UART2 + S3C2410_URXH,

       },

       [DMACH_TIMER] = {

              .name            = "timer",

              .channels[0]   = S3C2410_DCON_CH0_TIMER | DMA_CH_VALID,

              .channels[2]   = S3C2410_DCON_CH2_TIMER | DMA_CH_VALID,

              .channels[3]   = S3C2410_DCON_CH3_TIMER | DMA_CH_VALID,

       },

       [DMACH_I2S_IN] = {

              .name            = "i2s-sdi",

              .channels[1]   = S3C2410_DCON_CH1_I2SSDI | DMA_CH_VALID,

              .channels[2]   = S3C2410_DCON_CH2_I2SSDI | DMA_CH_VALID,

              .hw_addr.from       = S3C2410_PA_IIS + S3C2410_IISFIFO,

       },

       [DMACH_I2S_OUT] = {

              .name            = "i2s-sdo",

              .channels[2]   = S3C2410_DCON_CH2_I2SSDO | DMA_CH_VALID,

              .hw_addr.to    = S3C2410_PA_IIS + S3C2410_IISFIFO,

       },

       [DMACH_USB_EP1] = {

              .name            = "usb-ep1",

              .channels[0]   = S3C2410_DCON_CH0_USBEP1 | DMA_CH_VALID,

       },

       [DMACH_USB_EP2] = {

              .name            = "usb-ep2",

              .channels[1]   = S3C2410_DCON_CH1_USBEP2 | DMA_CH_VALID,

       },

       [DMACH_USB_EP3] = {

              .name            = "usb-ep3",

              .channels[2]   = S3C2410_DCON_CH2_USBEP3 | DMA_CH_VALID,

       },

       [DMACH_USB_EP4] = {

              .name            = "usb-ep4",

              .channels[3]   =S3C2410_DCON_CH3_USBEP4 | DMA_CH_VALID,

       },

};

一大堆東西 , 我們還是來看這個結構的註釋吧

Include/asm-arm/plat-s3c24xx/dma.h:

/* struct s3c24xx_dma_map

  *

  * this holds the mapping information for the channel selected

  * to be connected to the specified device

*/

// 保存了一些被選擇使用的 channel 和規定的設備間的一些 map 信息 . 具體到了使用的時候就會明白了

struct s3c24xx_dma_map {

       const char             *name;

       struct s3c24xx_dma_addr  hw_addr;

 

       unsigned long        channels[S3C2410_DMA_CHANNELS];

};

Ok, 這樣就把 s3c2410_dma_add 函數分析完了 , 到這裏把每個 channel 的各種信息包括各 channel 的寄存器地址 , 中斷號 , 跟設備的關係等信息都保存好了 ,  但是雖然每個 channel 都初始化好了 , 但是還記得嗎 , 到目前爲址 , 我們僅僅是向系統註冊了一個虛擬的設備 , 真真的 DMA 設備還沒註冊進系統呢 ,  因此接下來就是要註冊 DMA 設備了 , 在哪呢 ?

Arch/arm/plat-s3c24xx/dma.c:

static int __init s3c24xx_dma_sysdev_register(void)

{

       struct s3c2410_dma_chan *cp = s3c2410_chans;  // 這個全局變量裏已經保存了 channel 信息哦

       int channel, ret;

 

    // 對每個 channel 操作

       for (channel = 0; channel < dma_channels; cp++, channel++) {

              cp->dev.cls = &dma_sysclass;  // 指定 class dma_sysclass

              cp->dev.id  = channel;  //channel

              ret = sysdev_register(&cp->dev);  // 註冊設備

 

              if (ret) {

                     printk(KERN_ERR "error registering dev for dma %d/n",

                            channel);

                     return ret;

              }

       }

 

       return 0;

}

 

late_initcall(s3c24xx_dma_sysdev_register);  // 注意這行 , 它會在初始化完畢後被調用 ,

這個函數把所有的 channel 註冊到 dma_sysclass 類下 , 我們前面看到註冊設備時會調用該類的 add 函數 , 還好這裏的 dma_sysclass 類沒有 add 函數 , 我們可以輕鬆下了 .

Ok, 到這裏 DMA 設備算是全部準備好了 , 可以隨時被請求使用了 , 到這裏我們總結一下 :

Arch/arm/mach-s3c2410/dma.c 下的代碼主要是跟具體板子相關的代碼 , 而真正核心的代碼都在

Arch/arm/plat-s3c24xx/dma.c , 因此如果我們有塊跟 2410 類似的板子的話 , 主要實現的就是

Arch/arm/mach-s3c2410/dma.c 這個文件了 ,

同時我們也不難推測 , 使用 DMA 的函數應該都在 Arch/arm/plat-s3c24xx/dma.c . 沒錯 , 說的更具體些就是這個文件下被 EXPORT_SYMBOL 出來的函數都是提供給外部使用的 , 也就是其他部分使用 DMA 的接口 . 知道了這些我們接着來分析這些被 EXPORT_SYMBOL 的函數吧 .

 

 

Arch/arm/plat-s3c24xx/dma.c:

/* s3c2410_dma_getposition

  *

  * returns the current transfer points for the dma source and destination

*/

int s3c2410_dma_getposition(dmach_t channel, dma_addr_t *src, dma_addr_t *dst)

{

    // 獲取保存該 channel 信息的對象 , 初始化的時候講過

       struct s3c2410_dma_chan *chan = lookup_dma_channel(channel);  

 

       if (chan == NULL)

              return -EINVAL;

 

       if (src != NULL)   // 獲取源地址

              *src = dma_rdreg(chan, S3C2410_DMA_DCSRC); 

 

       if (dst != NULL)  // 獲取目的地址

              *dst = dma_rdreg(chan, S3C2410_DMA_DCDST);

 

       return 0;

}

 

EXPORT_SYMBOL(s3c2410_dma_getposition);

這個函數獲取某個 channel 當前正在傳輸的源地址和目的地址 . 主要就是通過讀該 channel 的源和目的寄存器獲得的 . S3C2410_DMA_DCSRC, S3C2410_DMA_DCDST 就是源和目的的偏移地址 . 可參考 2410 datasheet.  dma_rdreg 就是讀寄存器 .

Arch/arm/plat-s3c24xx/dma.c:

#define dma_rdreg(chan, reg) readl((chan)->regs + (reg))

接着看下一個 export 的函數

/* s3c2410_dma_devconfig

  *

  * configure the dma source/destination hardware type and address

  *

  * source:    S3C2410_DMASRC_HW: source is hardware

  *            S3C2410_DMASRC_MEM: source is memory

  *

  * hwcfg:     the value for xxxSTCn register,

  *            bit 0: 0=increment pointer, 1=leave pointer

  *            bit 1: 0=source is AHB, 1=source is APB

  *

  * devaddr:   physical address of the source

*/

Arch/arm/plat-s3c24xx/dma.c:

int s3c2410_dma_devconfig(int channel,

                       enum s3c2410_dmasrc source,

                       int hwcfg,

                       unsigned long devaddr)

{

    // 獲取保存該 channel 信息的對象 , 初始化的時候講過

       struct s3c2410_dma_chan *chan = lookup_dma_channel(channel);

 

       if (chan == NULL)

              return -EINVAL;

 

       pr_debug("%s: source=%d, hwcfg=%08x, devaddr=%08lx/n",

                __FUNCTION__, (int)source, hwcfg, devaddr);

 

       chan->source = source;  // 保存 DMA

       chan->dev_addr = devaddr;   // 保存源地址

 

    // 根據不同的 DMA 源來初始化 DMA channel

       switch (source) {

       case S3C2410_DMASRC_HW:

              /* source is hardware */

              pr_debug("%s: hw source, devaddr=%08lx, hwcfg=%d/n",

                       __FUNCTION__, devaddr, hwcfg);

              dma_wrreg(chan, S3C2410_DMA_DISRCC, hwcfg & 3);

              dma_wrreg(chan, S3C2410_DMA_DISRC,  devaddr);  // 源地址

              dma_wrreg(chan, S3C2410_DMA_DIDSTC, (0<<1) | (0<<0));

 

              chan->addr_reg = dma_regaddr(chan, S3C2410_DMA_DIDST);

              return 0;

 

       case S3C2410_DMASRC_MEM:

              /* source is memory */

              pr_debug( "%s: mem source, devaddr=%08lx, hwcfg=%d/n",

                       __FUNCTION__, devaddr, hwcfg);

              dma_wrreg(chan, S3C2410_DMA_DISRCC, (0<<1) | (0<<0));

              dma_wrreg(chan, S3C2410_DMA_DIDST,  devaddr);

              dma_wrreg(chan, S3C2410_DMA_DIDSTC, hwcfg & 3);

 

              chan->addr_reg = dma_regaddr(chan, S3C2410_DMA_DISRC);

              return 0;

       }

 

       printk(KERN_ERR "dma%d: invalid source type (%d)/n", channel, source);

       return -EINVAL;

}

 

EXPORT_SYMBOL(s3c2410_dma_devconfig);

這個函數用來配置某個 channel 的源的類型及源地址 , 然後爲某種源設置好地址增長方式 , 具體寄存器含義參考 2410 datasheet, 2410 DMA 的各種操作模式可參考我的另一篇文章 .

Arch/arm/plat-s3c24xx/dma.c:

int s3c2410_dma_set_buffdone_fn(dmach_t channel, s3c2410_dma_cbfn_t rtn)

{

       struct s3c2410_dma_chan *chan = lookup_dma_channel(channel);

 

       if (chan == NULL)

              return -EINVAL;

 

       pr_debug("%s: chan=%p, callback rtn=%p/n", __FUNCTION__, chan, rtn);

 

       chan->callback_fn = rtn;   // 設置回調函數

 

       return 0;

}

 

EXPORT_SYMBOL(s3c2410_dma_set_buffdone_fn);

該函數主要爲某個 channel 設置一個 done 的回調函數 . 該回調函數會在傳輸完成後被調用 .

 

Arch/arm/plat-s3c24xx/dma.c:

/* do we need to protect the settings of the fields from

  * irq?

*/

int s3c2410_dma_set_opfn(dmach_t channel, s3c2410_dma_opfn_t rtn)

{

       struct s3c2410_dma_chan *chan = lookup_dma_channel(channel);

 

       if (chan == NULL)

              return -EINVAL;

 

       pr_debug("%s: chan=%p, op rtn=%p/n", __FUNCTION__, chan, rtn);

 

       chan->op_fn = rtn;

 

       return 0;

}

 

EXPORT_SYMBOL(s3c2410_dma_set_opfn);

該函數主要爲某個 channel 設置一個操作的回調函數 . 該回調函數會在操作該 channel 時被調用 ( 有哪些操作會在 s3c2410_dma_ctrl 裏看到 )

 

Arch/arm/plat-s3c24xx/dma.c:

int s3c2410_dma_setflags(dmach_t channel, unsigned int flags)

{

       struct s3c2410_dma_chan *chan = lookup_dma_channel(channel);

 

       if (chan == NULL)

              return -EINVAL;

 

       pr_debug("%s: chan=%p, flags=%08x/n", __FUNCTION__, chan, flags);

 

       chan->flags = flags;   // 設置標記

 

       return 0;

}

 

EXPORT_SYMBOL(s3c2410_dma_setflags);

該函數主要爲某個 channel 設置一個標記 , 標記有 :

Include/asm-arm/arch-s3c2410/dma.h:

/* flags */

 

#define S3C2410_DMAF_SLOW         (1<<0)   /* slow, so don't worry about

                                       * waiting for reloads */

#define S3C2410_DMAF_AUTOSTART    (1<<1)   /* auto-start if buffer queued */

我們會在後面看到 flag 的使用

 

Arch/arm/plat-s3c24xx/dma.c:

/* DMA configuration for each channel

  *

  * DISRCC -> source of the DMA (AHB,APB)

  * DISRC  -> source address of the DMA

  * DIDSTC -> destination of the DMA (AHB,APD)

  * DIDST  -> destination address of the DMA

*/

 

/* s3c2410_dma_config

  *

  * xfersize:     size of unit in bytes (1,2,4)

  * dcon:         base value of the DCONx register

*/

 

int s3c2410_dma_config(dmach_t channel,

                     int xferunit,

                     int dcon)

{

       struct s3c2410_dma_chan *chan = lookup_dma_channel(channel);

 

       pr_debug("%s: chan=%d, xfer_unit=%d, dcon=%08x/n",

                __FUNCTION__, channel, xferunit, dcon);

 

       if (chan == NULL)

              return -EINVAL;

 

       pr_debug("%s: Initial dcon is %08x/n", __FUNCTION__, dcon);

 

       dcon |= chan->dcon & dma_sel.dcon_mask;

 

       pr_debug("%s: New dcon is %08x/n", __FUNCTION__, dcon);

 

       // 設置每個傳輸單元的大小

       switch (xferunit) {

       case 1:

              dcon |= S3C2410_DCON_BYTE;

              break;

 

       case 2:

              dcon |= S3C2410_DCON_HALFWORD;

              break;

 

       case 4:

              dcon |= S3C2410_DCON_WORD;

              break;

 

       default:

              pr_debug("%s: bad transfer size %d/n", __FUNCTION__, xferunit);

              return -EINVAL;

       }

 

       dcon |= S3C2410_DCON_HWTRIG;   // 硬件請求模式

       dcon |= S3C2410_DCON_INTREQ;   // 打開中斷

 

       pr_debug("%s: dcon now %08x/n", __FUNCTION__, dcon);

   

    // 保存配置到全局變量中

       chan->dcon = dcon;

       chan->xfer_unit = xferunit;

 

       return 0;

}

 

EXPORT_SYMBOL(s3c2410_dma_config);

該函數主要用來配置某個 channel 的請求模式 , 傳輸單元大小等 . 從中可以看出目前只支持硬件請求模式

 

Arch/arm/plat-s3c24xx/dma.c:

int

s3c2410_dma_ctrl(dmach_t channel, enum s3c2410_chan_op op)

{

       struct s3c2410_dma_chan *chan = lookup_dma_channel(channel);

 

       if (chan == NULL)

              return -EINVAL;

 

       switch (op) {

       case S3C2410_DMAOP_START:

              return s3c2410_dma_start(chan);   // 開始一個 DMA 傳輸

 

       case S3C2410_DMAOP_STOP:

              return s3c2410_dma_dostop(chan);  // 停止一個 DMA 傳輸

 

       case S3C2410_DMAOP_PAUSE:

       case S3C2410_DMAOP_RESUME:  

              return -ENOENT;

 

       case S3C2410_DMAOP_FLUSH:

              return s3c2410_dma_flush(chan);  //

 

       case S3C2410_DMAOP_STARTED:   // 指示傳輸開始

              return s3c2410_dma_started(chan);

 

       case S3C2410_DMAOP_TIMEOUT:

              return 0;

 

       }

 

       return -ENOENT;      /* unknown, don't bother */

}

 

EXPORT_SYMBOL(s3c2410_dma_ctrl);

OK, 這個函數主要就是用來啓用 , 停止 DMA 操作了 ,  比較重要的一個函數 . 等分析完了 export 的接口後 , 我們在來逐個分析每個 DMA 操作 .

 

 

Arch/arm/plat-s3c24xx/dma.c:

/* s3c2410_dma_free

  *

  * release the given channel back to the system, will stop and flush

  * any outstanding transfers, and ensure the channel is ready for the

  * next claimant.

  *

  * Note, although a warning is currently printed if the freeing client

  * info is not the same as the registrant's client info, the free is still

  * allowed to go through.

*/

 

int s3c2410_dma_free(dmach_t channel, struct s3c2410_dma_client *client)

{

       struct s3c2410_dma_chan *chan = lookup_dma_channel(channel);

       unsigned long flags;

 

       if (chan == NULL)

              return -EINVAL;

 

       local_irq_save(flags);

 

       if (chan->client != client) { 

              printk(KERN_WARNING "dma%d: possible free from different client (channel %p, passed %p)/n",

                     channel, chan->client, client);

       }

 

       /* sort out stopping and freeing the channel */

 

       if (chan->state != S3C2410_DMA_IDLE) {  // channel 正在使用中

              pr_debug("%s: need to stop dma channel %p/n",

                     __FUNCTION__, chan);

 

              /* possibly flush the channel */

              s3c2410_dma_ctrl(channel, S3C2410_DMAOP_STOP);   // 停止該 channel

       }

 

    //reset channel 的相關信息

       chan->client = NULL;

       chan->in_use = 0;

 

       if (chan->irq_claimed)

              free_irq(chan->irq, (void *)chan);  // 釋放該中斷

 

       chan->irq_claimed = 0;

 

       if (!(channel & DMACH_LOW_LEVEL))

              dma_chan_map[channel] = NULL;

 

       local_irq_restore(flags);

 

       return 0;

}

 

EXPORT_SYMBOL(s3c2410_dma_free);

根據註釋我們很清楚了 ,  該函數主要就是釋放一個 channel, 使其處於 ready 狀態 ,

 

Arch/arm/plat-s3c24xx/dma.c:

/* s3c2410_request_dma

  *

  * get control of an dma channel

*/

 

int s3c2410_dma_request(unsigned int channel,

                     struct s3c2410_dma_client *client,

                     void *dev)

{

       struct s3c2410_dma_chan *chan;

       unsigned long flags;

       int err;

 

       pr_debug("dma%d: s3c2410_request_dma: client=%s, dev=%p/n",

                channel, client->name, dev);

 

       local_irq_save(flags);

    

    // 獲取空閒的 channel

       chan = s3c2410_dma_map_channel(channel);

       if (chan == NULL) {   // 無空閒 channel 則返回失敗

              local_irq_restore(flags);

              return -EBUSY;

       }

 

       dbg_showchan(chan);

   

    // 保存使用該 channel 的用戶等信息

       chan->client = client;

       chan->in_use = 1;

 

       if (!chan->irq_claimed) {   // 該中斷沒註冊

              pr_debug("dma%d: %s : requesting irq %d/n",

                       channel, __FUNCTION__, chan->irq);

 

              chan->irq_claimed = 1;   // 標記註冊

              local_irq_restore(flags);

 

              err = request_irq(chan->irq, s3c2410_dma_irq, IRQF_DISABLED,

                              client->name, (void *)chan);  // 註冊該中斷

 

              local_irq_save(flags);

 

              if (err) {  // 失敗則 reset channel

                     chan->in_use = 0;

                     chan->irq_claimed = 0;

                     local_irq_restore(flags);

 

                     printk(KERN_ERR "%s: cannot get IRQ %d for DMA %d/n",

                            client->name, chan->irq, chan->number);

                     return err;

              }

 

              chan->irq_enabled = 1;

       }

 

       local_irq_restore(flags);

 

       /* need to setup */

 

       pr_debug("%s: channel initialised, %p/n", __FUNCTION__, chan);

 

       return 0;

}

 

EXPORT_SYMBOL(s3c2410_dma_request);

  該函數主要就是爲請求的用戶找到一個空閒的 channel, 並把它分配給該用戶 , 同時打開中斷 , 保存相關信息 .

 

Arch/arm/plat-s3c24xx/dma.c:

/* s3c2410_dma_enqueue

  *

  * queue an given buffer for dma transfer.

  *

  * id         the device driver's id information for this buffer

  * data       the physical address of the buffer data

  * size       the size of the buffer in bytes

  *

  * If the channel is not running, then the flag S3C2410_DMAF_AUTOSTART

  * is checked, and if set, the channel is started. If this flag isn't set,

  * then an error will be returned.

  *

  * It is possible to queue more than one DMA buffer onto a channel at

  * once, and the code will deal with the re-loading of the next buffer

  * when necessary.

*/

 

int s3c2410_dma_enqueue(unsigned int channel, void *id,

                     dma_addr_t data, int size)

{

       struct s3c2410_dma_chan *chan = lookup_dma_channel(channel);

       struct s3c2410_dma_buf *buf;

       unsigned long flags;

 

       if (chan == NULL)

              return -EINVAL;

 

       pr_debug("%s: id=%p, data=%08x, size=%d/n",

                __FUNCTION__, id, (unsigned int)data, size);

   

    // 從高速緩衝中分配一塊 buffer 用於 DMA 傳輸 , dma_kmem 是我們在初始化的時候就創建好的

       buf = kmem_cache_alloc(dma_kmem, GFP_ATOMIC);

       if (buf == NULL) {

              pr_debug("%s: out of memory (%ld alloc)/n",

                       __FUNCTION__, (long)sizeof(*buf));

              return -ENOMEM;

       }

 

       //pr_debug("%s: new buffer %p/n", __FUNCTION__, buf);

       //dbg_showchan(chan);

   

    // 初始化這塊要被傳輸的 buf

       buf->next  = NULL;

       buf->data  = buf->ptr = data;  // 指向要傳輸的 data

       buf->size  = size;  // 傳輸大小

       buf->id    = id;

       buf->magic = BUF_MAGIC;

 

       local_irq_save(flags);

 

       if (chan->curr == NULL) {    // 當前 channel 沒有在傳輸

              /* we've got nothing loaded... */

              pr_debug("%s: buffer %p queued onto empty channel/n",

                       __FUNCTION__, buf);

 

              chan->curr = buf;   // 直接掛在 curr

              chan->end  = buf;

              chan->next = NULL;

       } else {  // 當前 channel 正在傳輸

              pr_debug("dma%d: %s: buffer %p queued onto non-empty channel/n",

                       chan->number, __FUNCTION__, buf);

 

              if (chan->end == NULL)

                     pr_debug("dma%d: %s: %p not empty, and chan->end==NULL?/n",

                              chan->number, __FUNCTION__, chan);

 

              // buffer 掛到隊列的最後面 , 並重設 end

              chan->end->next = buf;   

              chan->end = buf;

       }

 

       /* if necessary, update the next buffer field */

       if (chan->next == NULL)

              chan->next = buf;

 

       /* check to see if we can load a buffer */

       if (chan->state == S3C2410_DMA_RUNNING) {  // channel 正在運行

              if (chan->load_state == S3C2410_DMALOAD_1LOADED && 1) {  // 已有 buf load

                     if (s3c2410_dma_waitforload(chan, __LINE__) == 0) {  // 等待 load

                            printk(KERN_ERR "dma%d: loadbuffer:"

                                   "timeout loading buffer/n",

                                   chan->number);

                            dbg_showchan(chan);

                            local_irq_restore(flags);

                            return -EINVAL;

                     }

              }

 

              while (s3c2410_dma_canload(chan) && chan->next != NULL) { // 檢查能否 load

                     s3c2410_dma_loadbuffer(chan, chan->next);  //load buffer

              }

       } else if (chan->state == S3C2410_DMA_IDLE) {  // channel 空閒着

              if (chan->flags & S3C2410_DMAF_AUTOSTART) { // 如果設了自動啓動標記 , 則直接啓動該次傳輸

                     s3c2410_dma_ctrl(chan->number, S3C2410_DMAOP_START); // 啓動傳輸

              }

       }

 

       local_irq_restore(flags);

       return 0;

}

 

EXPORT_SYMBOL(s3c2410_dma_enqueue);

 

   該函數首先從先前創建的高速緩衝池中獲取一個 buf, 並把要傳輸的 data 保存在該 buf , 然後根據當前 channel 的運行狀態來選擇是 load buf, 還是直接傳輸該 buf.

   Channel 在運行過程中會有很多的狀態 , 所有狀態如下 :

Include/asm-arm/arch-s3c2410/dma.h:

/* enum s3c2410_dma_loadst

  *

  * This represents the state of the DMA engine, wrt to the loaded / running

  * transfers. Since we don't have any way of knowing exactly the state of

  * the DMA transfers, we need to know the state to make decisions on wether

  * we can

  *

  * S3C2410_DMA_NONE

  *

  * There are no buffers loaded (the channel should be inactive)

  *

  * S3C2410_DMA_1LOADED

  *

  * There is one buffer loaded, however it has not been confirmed to be

  * loaded by the DMA engine. This may be because the channel is not

  * yet running, or the DMA driver decided that it was too costly to

  * sit and wait for it to happen.

  *

  * S3C2410_DMA_1RUNNING

  *

  * The buffer has been confirmed running, and not finisged

  *

  * S3C2410_DMA_1LOADED_1RUNNING

  *

  * There is a buffer waiting to be loaded by the DMA engine, and one

  * currently running.

*/

 

enum s3c2410_dma_loadst {

       S3C2410_DMALOAD_NONE,

       S3C2410_DMALOAD_1LOADED,

       S3C2410_DMALOAD_1RUNNING,

       S3C2410_DMALOAD_1LOADED_1RUNNING,

};

各種裝態註釋的很明顯了 , 我就不再羅索了 .

Channel 運行時會有一個正在傳輸的 buf, 一個已經加載的 buf, 還有很多等待加載的 buf.

我們來把這個函數中調用的函數也逐個分析下 :

Arch/arm/plat-s3c24xx/dma.c:

/* s3c2410_dma_waitforload

  *

  * wait for the DMA engine to load a buffer, and update the state accordingly

*/

 

static int

s3c2410_dma_waitforload(struct s3c2410_dma_chan *chan, int line)

{

       int timeout = chan->load_timeout; // 初始化時 load_timeout 被設成了 1 << 18

       int took;

 

     // 該函數只在 S3C2410_DMALOAD_1LOADED 狀態下被調用

       if (chan->load_state != S3C2410_DMALOAD_1LOADED) {

              printk(KERN_ERR "dma%d: s3c2410_dma_waitforload() called in loadstate %d from line %d/n", chan->number, chan->load_state, line);

              return 0;

       }

 

       if (chan->stats != NULL)

              chan->stats->loads++;  // 更新統計信息

 

       while (--timeout > 0) {

       // 獲取還剩的傳輸量 , 左移 (32-20) 只是把 [21:20] 位移調 , 因爲它僅和 0 比較 , 所以無需確切的數據

              if ((dma_rdreg(chan, S3C2410_DMA_DSTAT) << (32-20)) != 0) {

                     took = chan->load_timeout - timeout;  // 等待了這麼長時間

 

                     // 保存統計信息 , 該函數更新最長 , 最短超時時間 , 並更新總超時時間

s3c2410_dma_stats_timeout(chan->stats, took); 

 

                     switch (chan->load_state) {

                     case S3C2410_DMALOAD_1LOADED:

                  // 因爲有數據在傳輸了 , 因此更新 channel 的狀態 , 從這我們也能看到 , 一次只能有一個

//buf load

                            chan->load_state = S3C2410_DMALOAD_1RUNNING; 

                            break;

 

                     default:

                            printk(KERN_ERR "dma%d: unknown load_state in s3c2410_dma_waitforload() %d/n", chan->number, chan->load_state);

                     }

 

                     return 1;

              }

       }

 

       if (chan->stats != NULL) {

              chan->stats->timeout_failed++;

       }

 

       return 0;

}

該函數很簡單 , 它等待已經 load buf start 傳輸 , 然後更新相關統計信息 , 也正因爲 load buf 被開始傳輸了 , 因此該函數完後 , 應該會有一個新的 buf load. 至於原先 load buf 是如何被 start , 我們以後在看 .

接下來我們看 s3c2410_dma_canload 函數 :

Arch/arm/plat-s3c24xx/dma.c:

/* s3c2410_dma_canload

  *

  * work out if we can queue another buffer into the DMA engine

*/

static int

s3c2410_dma_canload(struct s3c2410_dma_chan *chan)

{ 

   // 在這 2 個狀態下是可以 load

       if (chan->load_state == S3C2410_DMALOAD_NONE ||

           chan->load_state == S3C2410_DMALOAD_1RUNNING)

              return 1;

 

       return 0;

}

跑完 s3c2410_dma_waitforload 後如果正確 , 則狀態應該是 S3C2410_DMALOAD_1RUNNING, 所以這裏就是可以加載了 ,   那當然要看加載函數了

Arch/arm/plat-s3c24xx/dma.c:

/* s3c2410_dma_loadbuffer

  *

  * load a buffer, and update the channel state

*/

 

static inline int

s3c2410_dma_loadbuffer(struct s3c2410_dma_chan *chan,

                     struct s3c2410_dma_buf *buf)

{

       unsigned long reload;

 

       pr_debug("s3c2410_chan_loadbuffer: loading buff %p (0x%08lx,0x%06x)/n",

                buf, (unsigned long)buf->data, buf->size);

 

       if (buf == NULL) {

              dmawarn("buffer is NULL/n");

              return -EINVAL;

       }

 

       /* check the state of the channel before we do anything */

    // 狀態錯誤 , 只能有 1 loaded buf

       if (chan->load_state == S3C2410_DMALOAD_1LOADED) { 

              dmawarn("load_state is S3C2410_DMALOAD_1LOADED/n");

       }

         

  // 狀態錯誤 , 只能有 1 loaded buf

       if (chan->load_state == S3C2410_DMALOAD_1LOADED_1RUNNING) {

              dmawarn("state is S3C2410_DMALOAD_1LOADED_1RUNNING/n");

       }

 

       /* it would seem sensible if we are the last buffer to not bother

         * with the auto-reload bit, so that the DMA engine will not try

         * and load another transfer after this one has finished...

         */

    // 判斷是否要自動加載後續的 buf, 如果有後續的 buf 則自動加載

       if (chan->load_state == S3C2410_DMALOAD_NONE) {

              pr_debug("load_state is none, checking for noreload (next=%p)/n",

                       buf->next);

              reload = (buf->next == NULL) ? S3C2410_DCON_NORELOAD : 0;

       } else {

              //pr_debug("load_state is %d => autoreload/n", chan->load_state);

              reload = S3C2410_DCON_AUTORELOAD;

       }

 

       if ((buf->data & 0xf0000000) != 0x30000000) {

              dmawarn("dmaload: buffer is %p/n", (void *)buf->data);

       }

 

       writel(buf->data, chan->addr_reg);  // 寫地址寄存器

   

    // 不解釋了 , 看寄存器說明吧

       dma_wrreg(chan, S3C2410_DMA_DCON,

                chan->dcon | reload | (buf->size/chan->xfer_unit));

 

       chan->next = buf->next;  // 更新鏈表

 

       /* update the state of the channel */

  

    // 更新狀態

       switch (chan->load_state) {

       case S3C2410_DMALOAD_NONE:

              chan->load_state = S3C2410_DMALOAD_1LOADED;

              break;

 

       case S3C2410_DMALOAD_1RUNNING:

              chan->load_state = S3C2410_DMALOAD_1LOADED_1RUNNING;

              break;

 

       default:

              dmawarn("dmaload: unknown state %d in loadbuffer/n",

                     chan->load_state);

              break;

       }

 

       return 0;

}

該函數主要是把要傳輸的數據的地址先存入寄存器中 , 等當前的傳輸完成後會根據時候 auto reload 的情況來確定是否開始這次的傳輸 .

OK, 到目前爲止講完了所有的 export 的函數 , 現在還剩下 dma 的操作函數和中斷函數沒講了 , let’s go!

我們先看中斷函數 , 該函數在一次傳輸完成後被調用

Arch/arm/plat-s3c24xx/dma.c:

static irqreturn_t

s3c2410_dma_irq(int irq, void *devpw)

{

       struct s3c2410_dma_chan *chan = (struct s3c2410_dma_chan *)devpw;

       struct s3c2410_dma_buf  *buf;

 

       buf = chan->curr;  // 當前傳輸完畢的 buf

 

       dbg_showchan(chan);

 

       /* modify the channel state */

  // 修改當前狀態

       switch (chan->load_state) {

       case S3C2410_DMALOAD_1RUNNING:

              /* TODO - if we are running only one buffer, we probably

                * want to reload here, and then worry about the buffer

                * callback */

 

              chan->load_state = S3C2410_DMALOAD_NONE;

              break;

 

       case S3C2410_DMALOAD_1LOADED:

              /* iirc, we should go back to NONE loaded here, we

                * had a buffer, and it was never verified as being

                * loaded.

                */

 

              chan->load_state = S3C2410_DMALOAD_NONE;

              break;

 

       case S3C2410_DMALOAD_1LOADED_1RUNNING:

              /* we'll worry about checking to see if another buffer is

                * ready after we've called back the owner. This should

                * ensure we do not wait around too long for the DMA

                * engine to start the next transfer

                */

 

              chan->load_state = S3C2410_DMALOAD_1LOADED;

              break;

 

       case S3C2410_DMALOAD_NONE:

              printk(KERN_ERR "dma%d: IRQ with no loaded buffer?/n",

                     chan->number);

              break;

 

       default:

              printk(KERN_ERR "dma%d: IRQ in invalid load_state %d/n",

                     chan->number, chan->load_state);

              break;

       }

 

       if (buf != NULL) {

              /* update the chain to make sure that if we load any more

                * buffers when we call the callback function, things should

                * work properly */

 

              chan->curr = buf->next;   // 更新傳輸的 buf

              buf->next  = NULL;

 

              if (buf->magic != BUF_MAGIC) {

                     printk(KERN_ERR "dma%d: %s: buf %p incorrect magic/n",

                            chan->number, __FUNCTION__, buf);

                     return IRQ_HANDLED;

              }

 

              s3c2410_dma_buffdone(chan, buf, S3C2410_RES_OK);  //buf 傳輸完成後的操作

 

              /* free resouces */

              s3c2410_dma_freebuf(buf);  // 釋放 buf, 我們看到傳輸前有申請 buf

       } else {

       }

 

       /* only reload if the channel is still running... our buffer done

         * routine may have altered the state by requesting the dma channel

         * to stop or shutdown... */

 

       /* todo: check that when the channel is shut-down from inside this

         * function, we cope with unsetting reload, etc */

   // 還有要傳輸的 buf, 則繼續傳輸

       if (chan->next != NULL && chan->state != S3C2410_DMA_IDLE) {

              unsigned long flags;

 

              switch (chan->load_state) {

              case S3C2410_DMALOAD_1RUNNING:

                     /* don't need to do anything for this state */

                     break;

 

              case S3C2410_DMALOAD_NONE:

                     /* can load buffer immediately */

                     break;

 

              case S3C2410_DMALOAD_1LOADED:

                     if (s3c2410_dma_waitforload(chan, __LINE__) == 0) {  // 等待被傳輸

                            /* flag error? */

                            printk(KERN_ERR "dma%d: timeout waiting for load (%s)/n",

                                   chan->number, __FUNCTION__);

                            return IRQ_HANDLED;

                     }

 

                     break;

 

              case S3C2410_DMALOAD_1LOADED_1RUNNING:

                     goto no_load;

 

              default:

                     printk(KERN_ERR "dma%d: unknown load_state in irq, %d/n",

                            chan->number, chan->load_state);

                     return IRQ_HANDLED;

              }

 

              local_irq_save(flags);

              s3c2410_dma_loadbuffer(chan, chan->next);   // 加載下一個 buf

              local_irq_restore(flags);

       } else {  // 所有的傳輸完成

              s3c2410_dma_lastxfer(chan);   // 完成處理工作

 

              /* see if we can stop this channel.. */

              if (chan->load_state == S3C2410_DMALOAD_NONE) {

                     pr_debug("dma%d: end of transfer, stopping channel (%ld)/n",

                              chan->number, jiffies);

                     s3c2410_dma_ctrl(chan->number | DMACH_LOW_LEVEL,

                                     S3C2410_DMAOP_STOP);  // 停止 dma 傳輸

              }

       }

 

  no_load:

       return IRQ_HANDLED;

}

我們看到當傳輸隊列中還有 buf 要傳輸時 , 沒有看到 start 的操作 , 這是爲什麼呢 ? 因爲在 load 的時候我們分析過 , 如果後續還有 buf 要傳輸 , 則自動加載運行 ,  所以這裏沒有必要手工 start.

s3c2410_dma_buffdone() 函數僅僅是調用前面註冊的回調函數 , 這裏不列出來了 .

s3c2410_dma_freebuf() 也很簡單 , 就是把 buf 歸還到緩衝池去 .

我們看下 s3c2410_dma_lastxfer

Arch/arm/plat-s3c24xx/dma.c:

/* s3c2410_dma_lastxfer

  *

  * called when the system is out of buffers, to ensure that the channel

  * is prepared for shutdown.

*/

 

static inline void

s3c2410_dma_lastxfer(struct s3c2410_dma_chan *chan)

{

#if 0

       pr_debug("dma%d: s3c2410_dma_lastxfer: load_state %d/n",

                chan->number, chan->load_state);

#endif

 

       switch (chan->load_state) {

       case S3C2410_DMALOAD_NONE:

              break;

 

       case S3C2410_DMALOAD_1LOADED:

              if (s3c2410_dma_waitforload(chan, __LINE__) == 0) {  // 等待加載的 buf 被執行

                            /* flag error? */

                     printk(KERN_ERR "dma%d: timeout waiting for load (%s)/n",

                            chan->number, __FUNCTION__);

                     return;

              }

              break;

 

       case S3C2410_DMALOAD_1LOADED_1RUNNING:

              /* I belive in this case we do not have anything to do

                * until the next buffer comes along, and we turn off the

                * reload */

              return;

 

       default:

              pr_debug("dma%d: lastxfer: unhandled load_state %d with no next/n",

                       chan->number, chan->load_state);

              return;

 

       }

 

       /* hopefully this'll shut the damned thing up after the transfer... */

    // 清楚自動加載標記 , 因爲無後續要傳輸的 buf, 所以要清這個標記

       dma_wrreg(chan, S3C2410_DMA_DCON, chan->dcon | S3C2410_DCON_NORELOAD);

}

很簡單的一個函數 , 這裏不多說了 .

好了 , 到這個該着中分析操作函數了 .

Arch/arm/plat-s3c24xx/dma.c:

/* s3c2410_dma_start

  *

  * start a dma channel going

*/

 

static int s3c2410_dma_start(struct s3c2410_dma_chan *chan)

{

       unsigned long tmp;

       unsigned long flags;

 

       pr_debug("s3c2410_start_dma: channel=%d/n", chan->number);

 

       local_irq_save(flags);

 

       if (chan->state == S3C2410_DMA_RUNNING) {  // 已經有 run 的了

              pr_debug("s3c2410_start_dma: already running (%d)/n", chan->state);

              local_irq_restore(flags);

              return 0;

       }

 

       chan->state = S3C2410_DMA_RUNNING;  // 更新狀態

 

       /* check wether there is anything to load, and if not, see

         * if we can find anything to load

         */

 

       if (chan->load_state == S3C2410_DMALOAD_NONE) { // 沒有加載過 buf

              if (chan->next == NULL) {  // 沒有 buf 要傳送的

                     printk(KERN_ERR "dma%d: channel has nothing loaded/n",

                            chan->number);

                     chan->state = S3C2410_DMA_IDLE;

                     local_irq_restore(flags);

                     return -EINVAL;

              }

 

              s3c2410_dma_loadbuffer(chan, chan->next);  // 加載 buf, 加載狀態也會相應更新

       }

 

       dbg_showchan(chan);

 

       /* enable the channel */

 

       if (!chan->irq_enabled) {

              enable_irq(chan->irq);  // 使能中斷

              chan->irq_enabled = 1;

       }

 

       /* start the channel going */

    // 啓動 DMA 傳輸 ,

       tmp = dma_rdreg(chan, S3C2410_DMA_DMASKTRIG);

       tmp &= ~S3C2410_DMASKTRIG_STOP;

       tmp |= S3C2410_DMASKTRIG_ON;

       dma_wrreg(chan, S3C2410_DMA_DMASKTRIG, tmp);

 

       pr_debug("dma%d: %08lx to DMASKTRIG/n", chan->number, tmp);

 

#if 0

       /* the dma buffer loads should take care of clearing the AUTO

         * reloading feature */

       tmp = dma_rdreg(chan, S3C2410_DMA_DCON);

       tmp &= ~S3C2410_DCON_NORELOAD;

       dma_wrreg(chan, S3C2410_DMA_DCON, tmp);

#endif

 

       s3c2410_dma_call_op(chan, S3C2410_DMAOP_START);  // 調用註冊的 op 回調函數

 

       dbg_showchan(chan);

 

       /* if we've only loaded one buffer onto the channel, then chec

         * to see if we have another, and if so, try and load it so when

         * the first buffer is finished, the new one will be loaded onto

         * the channel */

    // 由於當前 load 的已經在運行了 , 因此如果還有要傳輸的 buf load 進來

       if (chan->next != NULL) {

              if (chan->load_state == S3C2410_DMALOAD_1LOADED) {

            // 等待該 buf 被運行 , 別忘了我們設了自動加載運行 .

                     if (s3c2410_dma_waitforload(chan, __LINE__) == 0) {

                            pr_debug("%s: buff not yet loaded, no more todo/n",

                                     __FUNCTION__);

                     } else {

                            chan->load_state = S3C2410_DMALOAD_1RUNNING;

                            s3c2410_dma_loadbuffer(chan, chan->next);  // 加載 buf

                     }

 

              } else if (chan->load_state == S3C2410_DMALOAD_1RUNNING) {

                     s3c2410_dma_loadbuffer(chan, chan->next); // 加載 buf

              }

       }

 

 

       local_irq_restore(flags);

 

       return 0;

}

整個啓動流程就這樣完了 .

 

Arch/arm/plat-s3c24xx/dma.c:

static int s3c2410_dma_dostop(struct s3c2410_dma_chan *chan)

{

       unsigned long flags;

       unsigned long tmp;

 

       pr_debug("%s:/n", __FUNCTION__);

 

       dbg_showchan(chan);

 

       local_irq_save(flags);

 

       s3c2410_dma_call_op(chan,  S3C2410_DMAOP_STOP);  // 通知用戶該操作

   

    // 停止 DMA 傳輸

       tmp = dma_rdreg(chan, S3C2410_DMA_DMASKTRIG);

       tmp |= S3C2410_DMASKTRIG_STOP;

       //tmp &= ~S3C2410_DMASKTRIG_ON;

       dma_wrreg(chan, S3C2410_DMA_DMASKTRIG, tmp);

 

#if 0

       /* should also clear interrupts, according to WinCE BSP */

       tmp = dma_rdreg(chan, S3C2410_DMA_DCON);

       tmp |= S3C2410_DCON_NORELOAD;

       dma_wrreg(chan, S3C2410_DMA_DCON, tmp);

#endif

   

    // 更新狀態

       /* should stop do this, or should we wait for flush? */

       chan->state      = S3C2410_DMA_IDLE;

       chan->load_state = S3C2410_DMALOAD_NONE;

 

       local_irq_restore(flags);

 

       return 0;

}

該函數比較簡單 , 接着看

 

Arch/arm/plat-s3c24xx/dma.c:

/* s3c2410_dma_flush

  *

  * stop the channel, and remove all current and pending transfers

*/

 

static int s3c2410_dma_flush(struct s3c2410_dma_chan *chan)

{

       struct s3c2410_dma_buf *buf, *next;

       unsigned long flags;

 

       pr_debug("%s: chan %p (%d)/n", __FUNCTION__, chan, chan->number);

 

       dbg_showchan(chan);

 

       local_irq_save(flags);

 

       if (chan->state != S3C2410_DMA_IDLE) {

              pr_debug("%s: stopping channel.../n", __FUNCTION__ );

              s3c2410_dma_ctrl(chan->number, S3C2410_DMAOP_STOP);  // 停調傳輸

       }

 

       buf = chan->curr;

       if (buf == NULL)

              buf = chan->next;

 

       chan->curr = chan->next = chan->end = NULL;

 

       if (buf != NULL) {

              for ( ; buf != NULL; buf = next) {

                     next = buf->next;

 

                     pr_debug("%s: free buffer %p, next %p/n",

                            __FUNCTION__, buf, buf->next);

 

                     s3c2410_dma_buffdone(chan, buf, S3C2410_RES_ABORT);  // 通知用戶中斷了傳輸

                     s3c2410_dma_freebuf(buf);  // 釋放 buf

              }

       }

 

       dbg_showregs(chan);

 

       s3c2410_dma_waitforstop(chan);  

 

#if 0

       /* should also clear interrupts, according to WinCE BSP */

       {

              unsigned long tmp;

 

              tmp = dma_rdreg(chan, S3C2410_DMA_DCON);

              tmp |= S3C2410_DCON_NORELOAD;

              dma_wrreg(chan, S3C2410_DMA_DCON, tmp);

       }

#endif

 

       dbg_showregs(chan);

 

       local_irq_restore(flags);

 

       return 0;

}

  該函數的作用就是中斷所有的傳輸 , 並把所有隊列中等待傳輸的 buf 都清掉 .

 

Arch/arm/plat-s3c24xx/dma.c:

static int s3c2410_dma_started(struct s3c2410_dma_chan *chan)

{

       unsigned long flags;

 

       local_irq_save(flags);

 

       dbg_showchan(chan);

 

       /* if we've only loaded one buffer onto the channel, then chec

         * to see if we have another, and if so, try and load it so when

         * the first buffer is finished, the new one will be loaded onto

         * the channel */

    // 看註釋吧 , 不解釋了

       if (chan->next != NULL) {

              if (chan->load_state == S3C2410_DMALOAD_1LOADED) {

 

                     if (s3c2410_dma_waitforload(chan, __LINE__) == 0) {

                            pr_debug("%s: buff not yet loaded, no more todo/n",

                                     __FUNCTION__);

                     } else {

                            chan->load_state = S3C2410_DMALOAD_1RUNNING;

                            s3c2410_dma_loadbuffer(chan, chan->next);

                     }

 

              } else if (chan->load_state == S3C2410_DMALOAD_1RUNNING) {

                     s3c2410_dma_loadbuffer(chan, chan->next);

              }

       }

 

 

       local_irq_restore(flags);

 

       return 0;

 

}

最後的這個函數就由大家自己分析吧 .

s3c2410_dma_config 函數可以看出 , 該驅動只支持硬件請求模式 , 而從 s3c2410_dma_devconfig 函數可以看出 , 該驅動只支持設備和 memory 之間的 DMA 傳輸 .

至於如何使用的問題 , 可以去代碼裏搜一下哪些地方調用了 export 出來的函數就懂了 , 2410 的板子上 PCM 會用到 DMA 傳輸 ,   使用流程爲 :

    s3c2410_dma_request ->

s3c2410_dma_devconfig ->

s3c2410_dma_config ->            

s3c2410_dma_ctrl(prtd->params->channel, S3C2410_DMAOP_START);

當然一般還會註冊回調函數的 .

到此爲止整個 DMA 的操作流程都分析完了 , 希望對你有所幫助 , 

以後會寫些 cache, mmu, write buffer 等方面的驅動分析 .

 


發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章