Python之路,Day8 - Socket網絡編程

本節內容

Socket介紹
Socket參數介紹
基本Socket實例
Socket實現多連接處理
通過Socket實現簡單SSH
通過Socket實現文件傳送
作業開發一個支持多用戶在線的FTP程序



 

1. Socket介紹

概念
A network socket is an endpoint of a connection across a computer network. Today, most communication between computers is based on the Internet Protocol; therefore most network sockets are Internet sockets. More precisely, a socket is a handle (abstract reference) that a local program can pass to the networking application programming interface (API) to use the connection, for example "send this data on this socket".

For example, to send "Hello, world!" via TCP to port 80 of the host with address 1.2.3.4, one might get a socket, connect it to the remote host, send the string, then close the socket.

實現一個socket至少要分以下幾步(僞代碼)

Socket socket = getSocket(type = "TCP")  #設定好協議類型
connect(socket, address = "1.2.3.4", port = "80") #連接遠程機器
send(socket, "Hello, world!") #發送消息
close(socket) #關閉連接


A socket API is an application programming interface (API), usually provided by the operating system, that allows application programs to control and use network sockets. Internet socket APIs are usually based on the Berkeley sockets standard. In the Berkeley sockets standard, sockets are a form of file descriptor (a file handle), due to the Unix philosophy that "everything is a file", and the analogies between sockets and files: you can read, write, open, and close both.   

A socket address is the combination of an IP address and a port number, much like one end of a telephone connection is the combination of a phone number and a particular extension. Sockets need not have an address (for example for only sending data), but if a program binds a socket to an address, the socket can be used to receive data sent to that address. Based on this address, internet sockets deliver incoming data packets to the appropriate application process or thread.

Socket Families(地址簇)
socket.AF_UNIX unix本機進程間通信

socket.AF_INET IPV4 

socket.AF_INET6  IPV6

These constants represent the address (and protocol) families, used for the first argument to socket(). If the AF_UNIX constant is not defined then this protocol is unsupported. More constants may be available depending on the system.

Socket Types
socket.SOCK_STREAM  #for tcp

socket.SOCK_DGRAM   #for udp

socket.SOCK_RAW     #原始套接字普通的套接字無法處理ICMP、IGMP等網絡報文而SOCK_RAW可以其次SOCK_RAW也可以處理特殊的IPv4報文此外利用原始套接字可以通過IP_HDRINCL套接字選項由用戶構造IP頭。

socket.SOCK_RDM  #是一種可靠的UDP形式即保證交付數據報但不保證順序。SOCK_RAM用來提供對原始協議的低級訪問在需要執行某些特殊操作時使用如發送ICMP報文。SOCK_RAM通常僅限於高級用戶或管理員運行的程序使用。

socket.SOCK_SEQPACKET #廢棄了

These constants represent the socket types, used for the second argument to socket(). More constants may be available depending on the system. (Only SOCK_STREAM and SOCK_DGRAM appear to be generally useful.)

 

2. Socket 參數介紹

socket.socket(family=AF_INET, type=SOCK_STREAM, proto=0, fileno=None)  必會
Create a new socket using the given address family, socket type and protocol number. The address family should be AF_INET (the default), AF_INET6, AF_UNIX, AF_CAN or AF_RDS. The socket type should beSOCK_STREAM (the default), SOCK_DGRAM, SOCK_RAW or perhaps one of the other SOCK_ constants. The protocol number is usually zero and may be omitted or in the case where the address family is AF_CAN the protocol should be one of CAN_RAW or CAN_BCM. If fileno is specified, the other arguments are ignored, causing the socket with the specified file descriptor to return. Unlike socket.fromfd(), fileno will return the same socket and not a duplicate. This may help close a detached socket using socket.close().

socket.socketpair([family[, type[, proto]]])

Build a pair of connected socket objects using the given address family, socket type, and protocol number. Address family, socket type, and protocol number are as for the socket() function above. The default family is AF_UNIX if defined on the platform; otherwise, the default is AF_INET.

socket.create_connection(address[, timeout[, source_address]])

Connect to a TCP service listening on the Internet address (a 2-tuple (host, port)), and return the socket object. This is a higher-level function than socket.connect(): if host is a non-numeric hostname, it will try to resolve it for both AF_INET and AF_INET6, and then try to connect to all possible addresses in turn until a connection succeeds. This makes it easy to write clients that are compatible to both IPv4 and IPv6.

Passing the optional timeout parameter will set the timeout on the socket instance before attempting to connect. If no timeout is supplied, the global default timeout setting returned by getdefaulttimeout() is used.

If supplied, source_address must be a 2-tuple (host, port) for the socket to bind to as its source address before connecting. If host or port are ‘’ or 0 respectively the OS default behavior will be used.

socket.getaddrinfo(host, port, family=0, type=0, proto=0, flags=0) #獲取要連接的對端主機地址 必會

sk.bind(address) 必會

  s.bind(address) 將套接字綁定到地址。address地址的格式取決於地址族。在AF_INET下以元組host,port的形式表示地址。

sk.listen(backlog) 必會

  開始監聽傳入連接。backlog指定在拒絕連接之前可以掛起的最大連接數量。

      backlog等於5表示內核已經接到了連接請求但服務器還沒有調用accept進行處理的連接個數最大爲5
      這個值不能無限大因爲要在內核中維護連接隊列

sk.setblocking(bool) 必會

  是否阻塞默認True如果設置False那麼accept和recv時一旦無數據則報錯。

sk.accept() 必會

  接受連接並返回conn,address,其中conn是新的套接字對象可以用來接收和發送數據。address是連接客戶端的地址。

  接收TCP 客戶的連接阻塞式等待連接的到來

sk.connect(address) 必會

  連接到address處的套接字。一般address的格式爲元組hostname,port,如果連接出錯返回socket.error錯誤。

sk.connect_ex(address)

  同上只不過會有返回值連接成功時返回 0 連接失敗時候返回編碼例如10061

sk.close() 必會

  關閉套接字

sk.recv(bufsize[,flag]) 必會

  接受套接字的數據。數據以字符串形式返回bufsize指定最多可以接收的數量。flag提供有關消息的其他信息通常可以忽略。

sk.recvfrom(bufsize[.flag])

  與recv()類似但返回值是data,address。其中data是包含接收數據的字符串address是發送數據的套接字地址。

sk.send(string[,flag]) 必會

  將string中的數據發送到連接的套接字。返回值是要發送的字節數量該數量可能小於string的字節大小。即可能未將指定內容全部發送。

sk.sendall(string[,flag]) 必會

  將string中的數據發送到連接的套接字但在返回之前會嘗試發送所有數據。成功返回None失敗則拋出異常。

      內部通過遞歸調用send將所有內容發送出去。

sk.sendto(string[,flag],address)

  將數據發送到套接字address是形式爲ipaddrport的元組指定遠程地址。返回值是發送的字節數。該函數主要用於UDP協議。

sk.settimeout(timeout) 必會

  設置套接字操作的超時期timeout是一個浮點數單位是秒。值爲None表示沒有超時期。一般超時期應該在剛創建套接字時設置因爲它們可能用於連接的操作如 client 連接最多等待5s

sk.getpeername()  必會

  返回連接套接字的遠程地址。返回值通常是元組ipaddr,port。

sk.getsockname()

  返回套接字自己的地址。通常是一個元組(ipaddr,port)

sk.fileno()

  套接字的文件描述符

socket.sendfile(file, offset=0, count=None)

     發送文件 但目前多數情況下並無什麼卵用。

 

3. 基本Socket實例

前面講了這麼多到底咋麼用呢

SocketServer.py

import socket

server = socket.socket() #獲得socket實例
 
server.bind(("localhost",9998)) #綁定ip port
server.listen()  #開始監聽
print("等待客戶端的連接...")
conn,addr = server.accept() #接受並建立與客戶端的連接,程序在此處開始阻塞,只到有客戶端連接進來...
print("新連接:",addr )

data = conn.recv(1024)
print("收到消息:",data)

server.close()


SocketClient.py

import socket

client = socket.socket()

client.connect(("localhost",9998))

client.send(b"hey")

client.close()

上面的代碼的有一個問題 就是SocketServer.py運行起來後 接收了一次客戶端的data就退出了。。。 但實際場景中一個連接建立起來後可能要進行多次往返的通信。

wKiom1fazDWQvyeRAAdNlr2wxj0312.png

多次的數據交互怎麼實現呢

socketserver 支持多次交互

import socket
  
 server = socket.socket() #獲得socket實例
  
server.bind(("localhost",9998)) #綁定ip port
server.listen()  #開始監聽
print("等待客戶端的連接...")
conn,addr = server.accept() #接受並建立與客戶端的連接,程序在此處開始阻塞,只到有客戶端連接進來...
print("新連接:",addr )
while True:

    data = conn.recv(1024)

    print("收到消息:",data)
    conn.send(data.upper())

server.close()

socket客戶端支持多交互

import socket

client = socket.socket()

client.connect(("localhost",9998))

while True:
    msg = input(">>:").strip()
    if len(msg) == 0:continue
    client.send( msg.encode("utf-8") )

    data = client.recv(1024)
    print("來自服務器:",data)

client.close()

實現了多次交互 棒棒的 但你會發現一個小問題 就是客戶端一斷開服務器端就進入了死循環爲啥呢

看客戶端斷開時服務器端的輸出

等待客戶端的連接...
新連接: ('127.0.0.1', 62722)
收到消息: b'hey'
收到消息: b'you'
收到消息: b''  #客<span style="color: #ff0000;">戶端一斷開服務器端就收不到數據了但是不會報錯就進入了死循環模式。。</span>。
收到消息: b''
收到消息: b''
收到消息: b''
收到消息: b''

知道了原因就好解決了只需要加個判斷服務器接到的數據是否爲空就好了爲空就代表斷了。。。

加了判斷客戶端是否斷開的代碼

import socket

server = socket.socket() #獲得socket實例

server.bind(("localhost",9998)) #綁定ip port
server.listen()  #開始監聽
print("等待客戶端的連接...")
conn,addr = server.accept() #接受並建立與客戶端的連接,程序在此處開始阻塞,只到有客戶端連接進來...
print("新連接:",addr )
while True:

    data = conn.recv(1024)
    if not data:
        print("客戶端斷開了...")
        break
    print("收到消息:",data)
    conn.send(data.upper())

server.close()



4.Socket實現多連接處理

上面的代碼雖然實現了服務端與客戶端的多次交互但是你會發現如果客戶端斷開了 服務器端也會跟着立刻斷開因爲服務器只有一個while 循環客戶端一斷開服務端收不到數據 就會直接break跳出循環然後程序就退出了這顯然不是我們想要的結果 我們想要的是客戶端如果斷開了我們這個服務端還可以爲下一個客戶端服務它不能斷她接完一個客擦完嘴角的遺留物就要接下來勇敢的去接待下一個客人。 在這裏如何實現呢

conn,addr = server.accept() #接受並建立與客戶端的連接,程序在此處開始阻塞,只到有客戶端連接進來...

我們知道上面這句話負責等待並接收新連接對於上面那個程序其實在while break之後只要讓程序再次回到上面這句代碼這就可以讓服務端繼續接下一個客戶啦。

import socket
 
server = socket.socket() #獲得socket實例
 
server.bind(("localhost",9998)) #綁定ip port
server.listen()  #開始監聽
 
while True: #第一層loop
    print("等待客戶端的連接...")
    conn,addr = server.accept() #接受並建立與客戶端的連接,程序在此處開始阻塞,只到有客戶端連接進來...
    print("新連接:",addr )
    while True:
 
        data = conn.recv(1024)
        if not data:
            print("客戶端斷開了...")
            break #這裏斷開就會再次回到第一次外層的loop
        print("收到消息:",data)
        conn.send(data.upper())
 
server.close()

注意了 此時服務器端依然只能同時爲一個客戶服務其客戶來了得排隊(連接掛起)不能玩 three some. 這時你說想我就想玩3p,就想就想嘛其實也可以多交錢嘛繼續往下看後面開啓新姿勢後就可以玩啦。。。

 

5.通過socket實現簡單的ssh

光只是簡單的發消息、收消息沒意思乾點正事可以做一個極簡版的ssh就是客戶端連接上服務器後讓服務器執行命令並返回結果給客戶端。

socket ssh server

import socket
import os

server = socket.socket() #獲得socket實例
#server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

server.bind(("localhost",9998)) #綁定ip port
server.listen()  #開始監聽

while True: #第一層loop
    print("等待客戶端的連接...")
    conn,addr = server.accept() #接受並建立與客戶端的連接,程序在此處開始阻塞,只到有客戶端連接進來...
    print("新連接:",addr )
    while True:

        data = conn.recv(1024)
        if not data:
            print("客戶端斷開了...")
            break #這裏斷開就會再次回到第一次外層的loop
        print("收到命令:",data)
        res = os.popen(data.decode()).read() #py3 裏socket發送的只有bytes,os.popen又只能接受str,所以要decode一下
        print(len(res))
        conn.send(res.encode("utf-8"))

server.close()


socket ssh client

import socket

client = socket.socket()

client.connect(("localhost",9998))

while True:
    msg = input(">>:").strip()
    if len(msg) == 0:continue
    client.send( msg.encode("utf-8") )

    data = client.recv(1024)
    print(data.decode()) #命令執行結果

client.close()

very cool , 這樣我們就做了一個簡單的ssh , 但多試幾條命令你就會發現上面的程序有以下2個問題。

不能執行top等類似的 會持續輸出的命令,這是因爲服務器端在收到客戶端指令後會一次性通過os.popen執行並得到結果後返回給客戶但top這樣的命令用os.popen執行你會發現永遠都不會結束所以客戶端也永遠拿不到返回。(真正的ssh是通過select 異步等模塊實現的我們以後會涉及)
不能執行像cd這種沒有返回的指令 因爲客戶端每發送一條指令就會通過client.recv(1024)等待接收服務器端的返回結果但是cd命令沒有結果 服務器端調用conn.send(data)時是不會發送數據給客戶端的。 所以客戶端就會一直等着等到天荒地老結果就卡死了。解決的辦法是在服務器端判斷命令的執行返回結果的長度如果結果爲空就自己加個結果返回給客戶端如寫上"cmd exec success, has no output."
如果執行的命令返回結果的數據量比較大會發現結果返回不全在客戶端上再執行一條命令結果返回的還是上一條命令的後半段的執行結果這是爲什麼呢這是因爲我們的客戶寫client.recv(1024) 即客戶端一次最多隻接收1024個字節如果服務器端返回的數據是2000字節那有至少9百多字節是客戶端第一次接收不了的那怎麼辦呢服務器端此時不能把數據直接扔了呀so它會暫時存在服務器的io發送緩衝區裏等客戶端下次再接收數據的時候再發送給客戶端。 這就是爲什麼客戶端執行第2條命令時卻接收到了第一條命令的結果的原因。 這時有同學說了 那我直接在客戶端把client.recv(1024)改大一點不就好了麼 改成一次接收個100mb,哈哈這是不行的因爲socket每次接收和發送都有最大數據量限制的畢竟網絡帶寬也是有限的呀不能一次發太多發送的數據最大量的限制 就是緩衝區能緩存的數據的最大量這個緩衝區的最大值在不同的系統上是不一樣的 我實在查不到一個具體的數字但測試的結果是在linux上最大一次可接收10mb左右的數據不過官方的建議是不超過8k,也就是8192並且數據要可以被2整除不要問爲什麼 。anyway , 如果一次只能接收最多不超過8192的數據 那服務端返回的數據超過了這個數字怎麼辦呢比如讓服務器端打開一個5mb的文件並返回客戶端怎麼才能完整的接受到呢那就只能循環收取啦。
 

在開始解決上面問題3之前我們要考慮客戶端要循環接收服務器端的大量數據返回直到一條命令的結果全部返回爲止 但問題是客戶端知道服務器端返回的數據有多大麼答案是不知道那既然不知道服務器的要返回多大的數據那客戶端怎麼知道要循環接收多少次呢答案是不知道擦那咋辦 總不能靠猜吧呵呵。。。 當然不能那隻能讓服務器在發送數據之前主動告訴客戶端要發送多少數據給客戶端然後再開始發送數據yes, 機智如我搞起。

先簡單測試接收數據量大小
ssh server 返回執行結果大小

import socket
import os,subprocess

server = socket.socket() #獲得socket實例
server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

server.bind(("localhost",9998)) #綁定ip port
server.listen()  #開始監聽

while True: #第一層loop
    print("等待客戶端的連接...")
    conn,addr = server.accept() #接受並建立與客戶端的連接,程序在此處開始阻塞,只到有客戶端連接進來...
    print("新連接:",addr )
    while True:

        data = conn.recv(1024)
        if not data:
            print("客戶端斷開了...")
            break #這裏斷開就會再次回到第一次外層的loop
        print("收到命令:",data)
        #res = os.popen(data.decode()).read() #py3 裏socket發送的只有bytes,os.popen又只能接受str,所以要decode一下
        res = subprocess.Popen(data,shell=True,stdout=subprocess.PIPE).stdout.read() #跟上面那條命令的效果是一樣的
        if len(res) == 0:
            res = "cmd exec success,has not output!"
        conn.send(str(len(res)).endcode("utf-8")) #發送數據之前,先告訴客戶端要發多少數據給它
        conn.sendall(res.encode("utf-8")) #發送端也有最大數據量限制,所以這裏用sendall,相當於重複循環調用conn.send,直至數據發送完畢

server.close()


ssh client 接收執行結果的大小

import socket

client = socket.socket()

client.connect(("localhost",9998))

while True:
    msg = input(">>:").strip()
    if len(msg) == 0:continue
    client.send( msg.encode("utf-8") )

    res_return_size  = client.recv(1024) #接收這條命令執行結果的大小
    print("getting cmd result , ", res_return_size)
    total_rece_size = int(res_return_size)
    print(total_rece_size)

    #print(data.decode()) #命令執行結果

client.close()
結果輸出:<br>/Library/Frameworks/Python.framework/Versions/3.5/bin/python3.5 /Users/jieli/PycharmProjects/python基礎/自動化day8socket/sock_client.py
>>:cat /var/log/system.log
getting cmd result ,  b'3472816Sep  9 09:06:37 Jies-MacBook-Air kernel[0]: hibernate image path: /var/vm/sleepimage\nSep  9 09:06:37 Jies-MacBook-Air kernel[0]: efi pagecount 65\nSep  9 09:06:37 Jies-MacBook-Air kernel[0]: hibernate_page_list_setall(preflight 1) start\nSep  9 09:06:37 Jies-MacBook-Air kernel[0]: hibernate_page_list_setall time: 211 ms\nSep  9 09:06:37 Jies-MacBook-Air kernel[0]: pages 1211271, wire 225934, act 399265, inact 4, cleaned 0 spec 97, zf 3925, throt 0, compr 218191, xpmapped 40000\nSep  9 09:06:37 Jies-MacBook-Air kernel[0]: could discard act 94063 inact 129292 purgeable 58712 spec 81788 cleaned 0\nSep  9 09:06:37 Jies-MacBook-Air kernel[0]: WARNING: hibernate_page_list_setall skipped 47782 xpmapped pages\nSep  9 09:06:37 Jies-MacBook-Air kernel[0]: hibernate_page_list_setall preflight pageCount 225934 est comp 41 setfile 421527552 min 1073741824\nSep  9 09:06:37 Jies-MacBook-Air kernel[0]: kern_open_file_for_direct_io(0)\nSep  9 09:06:37 Jies-MacBook-Air kernel[0]: kern_open_file_for_direct_io took 181 ms\nSep  9 '
Traceback (most recent call last):
  File "/Users/jieli/PycharmProjects/python基礎/自動化day8socket/sock_client.py", line 17, in <module>
    total_rece_size = int(res_return_size)
ValueError: invalid literal for int() with base 10: b'3472816Sep  9 09:06:37 Jies-MacBook-Air kernel[0]: hibernate image path: /var/vm/sleepimage\nSep  9 09:06:37 Jies-MacBook-Air kernel[0]: efi pagecount 65\nSep  9 09:06:37 Jies-MacBook-Air kernel[0]:
 
Process finished with exit code 1

看程序執行報錯了 我在客戶端本想只接服務器端命令的執行結果但實際上卻連命令結果也跟着接收了一部分。 這是爲什麼呢服務器不是隻send了結果的大小麼不應該只是個數字麼尼瑪命令結果不是第2次send的時候才發送的麼擦擦擦價值觀都要崩潰了啊。。。。

哈哈這裏就引入了一個重要的概念“粘包” 即服務器端你調用時send 2次但你send調用時數據其實並沒有立刻被髮送給客戶端而是放到了系統的socket發送緩衝區裏等緩衝區滿了、或者數據等待超時了數據纔會被send到客戶端這樣就把好幾次的小數據拼成一個大數據統一發送到客戶端了這麼做的目地是爲了提高io利用效率一次性發送總比連發好幾次效率高嘛。 但也帶來一個問題就是“粘包”即2次或多次的數據粘在了一起統一發送了。就是我們上面看到的情況 。

我們在這裏必須要想辦法把粘包分開 因爲不分開你就沒辦法取出來服務器端返回的命令執行結果的大小呀。so ,那怎麼分開呢首先你是沒辦法讓緩衝區強制刷新把數據發給客戶端的。 你能做的只有一個。就是讓緩衝區超時超時了系統就不會等緩衝區滿了會直接把數據發走因爲不能一個勁的等後面的數據呀等太久會造成數據延遲了那可是極不好的。so如果讓緩衝區超時呢

答案就是

time.sleep(0.5),經多次測試讓服務器程序sleep 至少0.5就會造成緩衝區超時。哈哈哈 你會說擦這麼玩不會被老闆開除麼雖然我們覺得0.5s不多但是對數據實時要求高的業務場景比如股票交易過了0.5s 股票價格可以就漲跌很多搞毛線呀。但沒辦法我剛學socket的時候 找不到更好的辦法就是這麼玩的現在想想也真是low呀
但現在我是有Tesla的男人了不能再這麼low了 所以推出nb新姿勢就是 不用sleep,服務器端每發送一個數據給客戶端就立刻等待客戶端進行迴應即調用 conn.recv(1024), 由於recv在接收不到數據時是阻塞的這樣就會造成服務器端接收不到客戶端的響應就不會執行後面的conn.sendall(命令結果)的指令收到客戶端響應後再發送命令結果時緩衝區就已經被清空了因爲上一次的數據已經被強制發到客戶端了。 好機智 看下面代碼實現。


接收大數據 server端

#_*_coding:utf-8_*_
__author__ = 'Alex Li'

import socket
import os,subprocess

server = socket.socket() #獲得socket實例
server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

server.bind(("localhost",9999)) #綁定ip port
server.listen()  #開始監聽

while True: #第一層loop
    print("等待客戶端的連接...")
    conn,addr = server.accept() #接受並建立與客戶端的連接,程序在此處開始阻塞,只到有客戶端連接進來...
    print("新連接:",addr )
    while True:

        data = conn.recv(1024)
        if not data:
            print("客戶端斷開了...")
            break #這裏斷開就會再次回到第一次外層的loop
        print("收到命令:",data)
        #res = os.popen(data.decode()).read() #py3 裏socket發送的只有bytes,os.popen又只能接受str,所以要decode一下
        res = subprocess.Popen(data,shell=True,stdout=subprocess.PIPE).stdout.read() #跟上面那條命令的效果是一樣的
        if len(res) == 0:
            res = "cmd exec success,has not output!".encode("utf-8")
        conn.send(str(len(res)).encode("utf-8")) #發送數據之前,先告訴客戶端要發多少數據給它
        print("等待客戶ack應答...")
        client_final_ack = conn.recv(1024) #等待客戶端響應
        print("客戶應答:",client_final_ack.decode())
        print(type(res))
        conn.sendall(res) #發送端也有最大數據量限制,所以這裏用sendall,相當於重複循環調用conn.send,直至數據發送完畢

server.close()


接收大數據客戶端

#_*_coding:utf-8_*_
__author__ = 'Alex Li'

import socket
import sys

client = socket.socket()

client.connect(("localhost",9999))

while True:
    msg = input(">>:").strip()
    if len(msg) == 0:continue
    client.send( msg.encode("utf-8") )

    res_return_size  = client.recv(1024) #接收這條命令執行結果的大小
    print("getting cmd result , ", res_return_size)
    total_rece_size = int(res_return_size)
    print("total size:",res_return_size)
    client.send("準備好接收了,發吧loser".encode("utf-8"))
    received_size = 0 #已接收到的數據
    cmd_res = b''
    f = open("test_copy.html","wb")#把接收到的結果存下來,一會看看收到的數據 對不對
    while received_size != total_rece_size: #代表還沒收完
        data = client.recv(1024)
        received_size += len(data) #爲什麼不是直接1024,還判斷len幹嘛,注意,實際收到的data有可能比1024少
        cmd_res += data
    else:
        print("數據收完了",received_size)
        #print(cmd_res.decode())
        f.write(cmd_res) #把接收到的結果存下來,一會看看收到的數據 對不對
    #print(data.decode()) #命令執行結果

client.close()


6. SocketServer

The socketserver module simplifies the task of writing network servers.

socketserver一共有這麼幾種類型

class socketserver.TCPServer(server_address, RequestHandlerClass, bind_and_activate=True)


This uses the Internet TCP protocol, which provides for continuous streams of data between the client and server.

class socketserver.UDPServer(server_address, RequestHandlerClass, bind_and_activate=True)

This uses datagrams, which are discrete packets of information that may arrive out of order or be lost while in transit. The parameters are the same as for TCPServer.

class socketserver.UnixStreamServer(server_address, RequestHandlerClass, bind_and_activate=True)
class socketserver.UnixDatagramServer(server_address, RequestHandlerClass,bind_and_activate=True)

    These more infrequently used classes are similar to the TCP and UDP classes, but use Unix domain sockets; they’re not available on non-Unix platforms. The parameters are the same as for TCPServer.

There are five classes in an inheritance diagram, four of which represent synchronous servers of four types:

+------------+
| BaseServer |
+------------+
      |
      v
+-----------+        +------------------+
| TCPServer |------->| UnixStreamServer |
+-----------+        +------------------+
      |
      v
+-----------+        +--------------------+
| UDPServer |------->| UnixDatagramServer |
+-----------+        +--------------------+

創建一個socketserver 至少分以下幾步:

First, you must create a request handler class by subclassing the BaseRequestHandlerclass and overriding its handle() method; this method will process incoming requests.   
Second, you must instantiate one of the server classes, passing it the server’s address and the request handler class.
Then call the handle_request() orserve_forever() method of the server object to process one or many requests.
Finally, call server_close() to close the socket.
基本的socketserver代碼

import socketserver

class MyTCPHandler(socketserver.BaseRequestHandler):
    """
    The request handler class for our server.

    It is instantiated once per connection to the server, and must
    override the handle() method to implement communication to the
    client.
    """

    def handle(self):
        # self.request is the TCP socket connected to the client
        self.data = self.request.recv(1024).strip()
        print("{} wrote:".format(self.client_address[0]))
        print(self.data)
        # just send back the same data, but upper-cased
        self.request.sendall(self.data.upper())

if __name__ == "__main__":
    HOST, PORT = "localhost", 9999

    # Create the server, binding to localhost on port 9999
    server = socketserver.TCPServer((HOST, PORT), MyTCPHandler)

    # Activate the server; this will keep running until you
    # interrupt the program with Ctrl-C
    server.serve_forever()


但你發現上面的代碼依然不能同時處理多個連接擦那我搞這個幹嘛別急不是不能處理多併發如果你想你還要啓用多線程多線程我們現在還沒講但你大體知道有了多線程就能同時讓cpu幹多件事了就行先。

 

讓你的socketserver並發起來 必須選擇使用以下一個多併發的類

class socketserver.ForkingTCPServer

class socketserver.ForkingUDPServer

class socketserver.ThreadingTCPServer

class socketserver.ThreadingUDPServer

 

so 只需要把下面這句

server = socketserver.TCPServer((HOST, PORT), MyTCPHandler)


換成下面這個就可以多併發了這樣客戶端每連進一個來服務器端就會分配一個新的線程來處理這個客戶端的請求

   server = socketserver.ThreadingTCPServer((HOST, PORT), MyTCPHandler)


class socketserver.BaseServer(server_address, RequestHandlerClass) 主要有以下方法

lass socketserver.BaseServer(server_address, RequestHandlerClass)
This is the superclass of all Server objects in the module. It defines the interface, given below, but does not implement most of the methods, which is done in subclasses. The two parameters are stored in the respective server_address and RequestHandlerClass attributes.

fileno()
Return an integer file descriptor for the socket on which the server is listening. This function is most commonly passed to selectors, to allow monitoring multiple servers in the same process.

handle_request()
Process a single request. This function calls the following methods in order: get_request(), verify_request(), and process_request(). If the user-provided handle() method of the handler class raises an exception, the server’s handle_error() method will be called. If no request is received within timeout seconds, handle_timeout() will be called and handle_request() will return.

serve_forever(poll_interval=0.5)
Handle requests until an explicit shutdown() request. Poll for shutdown every poll_interval seconds. Ignores the timeout attribute. It also calls service_actions(), which may be used by a subclass or mixin to provide actions specific to a given service. For example, the ForkingMixIn class uses service_actions() to clean up zombie child processes.

Changed in version 3.3: Added service_actions call to the serve_forever method.

service_actions()
This is called in the serve_forever() loop. This method can be overridden by subclasses or mixin classes to perform actions specific to a given service, such as cleanup actions.

New in version 3.3.

shutdown()
Tell the serve_forever() loop to stop and wait until it does.

server_close()
Clean up the server. May be overridden.

address_family
The family of protocols to which the server’s socket belongs. Common examples are socket.AF_INET and socket.AF_UNIX.

RequestHandlerClass
The user-provided request handler class; an instance of this class is created for each request.

server_address
The address on which the server is listening. The format of addresses varies depending on the protocol family; see the documentation for the socket module for details. For Internet protocols, this is a tuple containing a string giving the address, and an integer port number: ('127.0.0.1', 80), for example.

socket
The socket object on which the server will listen for incoming requests.

The server classes support the following class variables:

allow_reuse_address
Whether the server will allow the reuse of an address. This defaults to False, and can be set in subclasses to change the policy.

request_queue_size
The size of the request queue. If it takes a long time to process a single request, any requests that arrive while the server is busy are placed into a queue, up to request_queue_size requests. Once the queue is full, further requests from clients will get a “Connection denied” error. The default value is usually 5, but this can be overridden by subclasses.

socket_type
The type of socket used by the server; socket.SOCK_STREAM and socket.SOCK_DGRAM are two common values.

timeout
Timeout duration, measured in seconds, or None if no timeout is desired. If handle_request() receives no incoming requests within the timeout period, the handle_timeout() method is called.

There are various server methods that can be overridden by subclasses of base server classes like TCPServer; these methods aren’t useful to external users of the server object.

finish_request()
Actually processes the request by instantiating RequestHandlerClass and calling its handle() method.

get_request()
Must accept a request from the socket, and return a 2-tuple containing the new socket object to be used to communicate with the client, and the client’s address.

handle_error(request, client_address)
This function is called if the handle() method of a RequestHandlerClass instance raises an exception. The default action is to print the traceback to standard output and continue handling further requests.

handle_timeout()
This function is called when the timeout attribute has been set to a value other than None and the timeout period has passed with no requests being received. The default action for forking servers is to collect the status of any child processes that have exited, while in threading servers this method does nothing.

process_request(request, client_address)
Calls finish_request() to create an instance of the RequestHandlerClass. If desired, this function can create a new process or thread to handle the request; the ForkingMixIn and ThreadingMixIn classes do this.

server_activate()
Called by the server’s constructor to activate the server. The default behavior for a TCP server just invokes listen() on the server’s socket. May be overridden.

server_bind()
Called by the server’s constructor to bind the socket to the desired address. May be overridden.

verify_request(request, client_address)
Must return a Boolean value; if the value is True, the request will be processed, and if it’s False, the request will be denied. This function can be overridden to implement access controls for a server. The default implementation always returns True.


發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章