Java JUC包源码分析 - 线程池ThreadPoolExecutor

线程池的相关类结构 

线程池就是存储了已创建指定个数的线程的集合,当需要用线程执行任务的时候,就可以从线程池中拿一个空闲的线程来执行任务。先看下源码,源码分析完了再看线程池的周边应用,以及几个思考。

第一部分,先看下线程池的结构,然后是如何创建线程池。

第二部分,线程池的状态

第三部分,提交任务到线程池的方法

第四部分,关闭线程池

第五部分,拒绝策略

 

第一部分:

public class ThreadPoolExecutor extends AbstractExecutorService {

    // 成员变量
    // 任务队列
    private final BlockingQueue<Runnable> workQueue;
    // 可重入锁
    private final ReentrantLock mainLock = new ReentrantLock();
    // 工作线程集合
    private final HashSet<Worker> workers = new HashSet<Worker>();
    // 阻塞条件
    private final Condition termination = mainLock.newCondition();
    // 记录着最大能达到的的线程池大小
    private int largestPoolSize;
    // 已经执行完的任务个数
    private long completedTaskCount;
    // 线程工厂
    private volatile ThreadFactory threadFactory;
    // 当线程池饱和或者关闭时的拒绝策略
    private volatile RejectedExecutionHandler handler;
    // 空闲线程在空闲时存活的时间
    private volatile long keepAliveTime;
    // 是否允许核心线程超时,默认false。false是当空闲时也保持活着状态,true是核心线程使用        
    // keepAliveTime时间来控制等待任务的超时时间
    private volatile boolean allowCoreThreadTimeOut;
    // 核心线程池的大小
    private volatile int corePoolSize;
    // 最大的线程池大小
    // private volatile int maximumPoolSize;
    // 默认的拒绝策略是中断,抛异常
    private static final RejectedExecutionHandler defaultHandler = new AbortPolicy();


    // 构造函数
    /**
    *
    *corePoolSize:核心线程池大小,也就是说有这么多线程一直活着,直到关闭线程池
    *maximumPoolSize:最大的线程数,也就是说除了常驻的线程外,当阻塞队列满的时候,还可以新建 
    *maximumPoolSize-corePoolSize个线程来处理任务
    *keepAliveTime:就是那些可扩展出来的空闲线程当空闲时的存活时间
    *unit:是上面空闲时间的单位
    *workqueue:工作队列,当提交任务后,任务已经占满核心线程来,就会被添加到这个阻塞队列里,等待
    *被线程执行
    *threadfactory:创建线程的工厂,可以自己实现,也可以利用另一个构造函数使用默认的工厂
    *handler:拒绝策略,当阻塞队列满时,这时候新添加任务进来后,对这个任务的拒绝策略,有4种
    */
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.acc = System.getSecurityManager() == null ?
                null :
                AccessController.getContext();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

    // 这个构造函数使用了默认的线程工厂和默认的拒绝策略,其他两个构造函数是只默认一个参数
    // 默认的线程工厂就是创建的线程是非守护线程,优先级为NORM_PRIORITY,详情看后面介绍
    // 默认的拒绝策略就是当阻塞队列满了,来了新任务,则抛出异常
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue) {

        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), defaultHandler);
    }

    // 其他两个不看了...
}

Executors.defaultThreadFactory():
    public static ThreadFactory defaultThreadFactory() {
        return new DefaultThreadFactory();
    }

ThreadPoolExecutor的内部类:
    static class DefaultThreadFactory implements ThreadFactory {
        private static final AtomicInteger poolNumber = new AtomicInteger(1);
        private final ThreadGroup group;
        private final AtomicInteger threadNumber = new AtomicInteger(1);
        private final String namePrefix;

        DefaultThreadFactory() {
            SecurityManager s = System.getSecurityManager();
            group = (s != null) ? s.getThreadGroup() :
                                  Thread.currentThread().getThreadGroup();
            namePrefix = "pool-" +
                          poolNumber.getAndIncrement() +
                         "-thread-";
        }
        // 新建线程时,设置线程为非守护线程,优先级为NORM_PRIORITY
        public Thread newThread(Runnable r) {
            Thread t = new Thread(group, r,
                                  namePrefix + threadNumber.getAndIncrement(),
                                  0);
            if (t.isDaemon())
                t.setDaemon(false);
            if (t.getPriority() != Thread.NORM_PRIORITY)
                t.setPriority(Thread.NORM_PRIORITY);
            return t;
        }
    }

// 默认的拒绝策略:
    private static final RejectedExecutionHandler defaultHandler =
        new AbortPolicy();
    public static class AbortPolicy implements RejectedExecutionHandler {
        /**
         * Creates an {@code AbortPolicy}.
         */
        public AbortPolicy() { }

        /**
         * Always throws RejectedExecutionException.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         * @throws RejectedExecutionException always
         */
        // 直接抛异常
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            throw new RejectedExecutionException("Task " + r.toString() +
                                                 " rejected from " +
                                                 e.toString());
        }
    }


// 再看下用Executors创建线程池的方法(不建议用这种方式创建线程池),这个类的设计风格,突然想起 
// effective Java里面的静态工厂方法创建对象:
public class Executors {
    // 创建固定大小的线程池,空闲线程被立即回收,任务阻塞队列是无界队列,
    // 最大可以是Integer.MAX_VALUE(问题在于这,可以一直提交任务进去,占满内存)
    // 默认的线程工厂和拒绝策略
    // 还有个重载方法,可以传线程工厂进去
    public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }

    // 创建只有一个线程的线程池,问题与上面的fix一样
    public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }

    // 创建一个可以无限增加线程数的线程池(问题也很大,想想线程数可以一直创建下去)
    // 空闲线程超过60秒就回收
    // 任务队列是一个栈的形式(非公平)
    public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }
    
    // 创建一个可延迟执行的线程池,核心线程池为1,线程池最大可达Integer.MAX_VALUE
    // 可延迟的工作队列
    // 创建委托类管理已创建的可延迟的线程池
    // 延迟相关的内容,下文还会讲到
    public static ScheduledExecutorService newSingleThreadScheduledExecutor() {
        return new DelegatedScheduledExecutorService
            (new ScheduledThreadPoolExecutor(1));
    }
}

第二部分,线程池的状态:

    // ctl记录里两个信息:一个是线程池的状态(高3位),一个是线程池的线程数量(低29位)
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    private static final int COUNT_BITS = Integer.SIZE - 3;
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

    // runState is stored in the high-order bits
    // 高3位值是111,此状态能够接受新任务,并且对已添加的任务处理
    private static final int RUNNING    = -1 << COUNT_BITS;
    // 高3位值是000,此状态不能接受新任务,但能处理已添加的任务
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    // 高3位值是001,此状态不能接受新任务,不能处理已添加的任务,并且会中断正在执行的任务
    private static final int STOP       =  1 << COUNT_BITS;
    // 高3位值是010,当所有任务终止时,线程池会变成TIDYING状态,当线程池变为TIDYING状态时,会执
    // 行钩子函数terminated()。terminated()在ThreadPoolExecutor类中是空的,若用户想在线程
    // 池变为TIDYING时,进行相应的处理;可以通过重载terminated()函数来实现。
    private static final int TIDYING    =  2 << COUNT_BITS;
    // 高3位值是011,线程池彻底终止就变成TERMINNATED状态
    private static final int TERMINATED =  3 << COUNT_BITS;

    // 附上英文的状态解释:
     *   RUNNING:  Accept new tasks and process queued tasks
     *   SHUTDOWN: Don't accept new tasks, but process queued tasks
     *   STOP:     Don't accept new tasks, don't process queued tasks,
     *             and interrupt in-progress tasks
     *   TIDYING:  All tasks have terminated, workerCount is zero,
     *             the thread transitioning to state TIDYING
     *             will run the terminated() hook method
     *   TERMINATED: terminated() has completed

    // Packing and unpacking ctl
    private static int runStateOf(int c)     { return c & ~CAPACITY; }
    private static int workerCountOf(int c)  { return c & CAPACITY; }
    private static int ctlOf(int rs, int wc) { return rs | wc; }

看一下线程池状态变化的过程:

第三部分,提交任务到线程池:

   public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();
        // 计算工作线程的数量,如果工作线程数小于核心线程数,则新建一个线程来执行这个任务
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        // 如果工作线程数达到了核心线程数,先判断线程池状态是否在运行,然后把任务放入任务阻塞队列
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            // 重复检查线程池状态,如果不是Running,就从任务队列移除上面添加的任务,并执行拒绝
            if (! isRunning(recheck) && remove(command))
                reject(command);
            // 如果工作线程数为0,则尝试新建一个任务为null的线程
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        // 通过addWorker(command, false)新建一个线程,并将任务(command)添加到该线程中;
        // 然后,启动该线程从而执行任务。
        // 如果addWorker(command, false)执行失败,则通过reject()执行相应的拒绝策略的内容。
        else if (!addWorker(command, false))
            reject(command);
    }
    // 添加任务到线程上执行
    private boolean addWorker(Runnable firstTask, boolean core) {

        // 这段主要是判断线程池的状态,确定能够添加任何到线程那执行
        retry:
        for (;;) {
            // 获取线程池的状态和数量的int值
            int c = ctl.get();
            // 获取线程池的状态
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            // 有效性检查:线程池关闭了,任务为null,工作队列为空
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;
            // 死循环+cas保证线程安全
            for (;;) {
                // 获取工作线程个数
                int wc = workerCountOf(c);
                // 如果工作线程数达到最大容量或者是核心线程数大小就返回false
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                // 工作线程数+1,失败就跳出循环重试
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                // 如果和之前的线程池状态不一致了,就继续从retry重新开始
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            // 新建一个工作线程,与任务绑定,等待run
            w = new Worker(firstTask);
            final Thread t = w.thread;
            // 判断线程
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                // 加锁
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());
                    // 获取锁之后,再重新检查线程状态
                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        // 如果发现新建的线程处于运行状态了,就抛出异常,因为还没有启动线程
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        // 把新建的线程放入线程池的集合里
                        workers.add(w);
                        // 记录放入线程池集合数量的最大值
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                // 如果添加成功,就启动线程
                if (workerAdded) {
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            // 如果线程没有start起来,就把那个线程从集合移除,线程数量ctl - 1
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

    // 工作线程类
    private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable
    {
        /**
         * This class will never be serialized, but we provide a
         * serialVersionUID to suppress a javac warning.
         */
        private static final long serialVersionUID = 6138294804551838833L;

        /** Thread this worker is running in.  Null if factory fails. */
        // 工厂失败时为null
        final Thread thread;
        /** Initial task to run.  Possibly null. */
        // 需要运行的任务,可以为null
        Runnable firstTask;
        /** Per-thread task counter */
        // 每个线程完成的任务数
        volatile long completedTasks;

        /**
         * Creates with given first task and thread from ThreadFactory.
         * @param firstTask the first task (null if none)
         */
        // 新建Worker
        Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }

        /** Delegates main run loop to outer runWorker  */
        public void run() {
            runWorker(this);
        }
    }

    // submit是AbstractExecutorService的方法
    // submit方法也是调用execut方法
    public Future<?> submit(Runnable task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<Void> ftask = newTaskFor(task, null);
        execute(ftask);
        return ftask;
    }
    // 有返回值的submit
    public <T> Future<T> submit(Runnable task, T result) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task, result);
        execute(ftask);
        return ftask;
    }
    // 传入Callable,也有返回值
    public <T> Future<T> submit(Callable<T> task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture<T> ftask = newTaskFor(task);
        execute(ftask);
        return ftask;
    }

第四部分,关闭线程池:

    // 关闭连接池,不会接受新的任务,但是会把已经提交的任务执行完毕
    public void shutdown() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            // 安全检查
            checkShutdownAccess();
            // 把线程池状态置SHUTDOWN
            advanceRunState(SHUTDOWN);
            // 中断空闲线程
            interruptIdleWorkers();
            onShutdown(); // hook for ScheduledThreadPoolExecutor
        } finally {
            mainLock.unlock();
        }
        tryTerminate();
    }
    // 中断空闲线程
    private void interruptIdleWorkers() {
        interruptIdleWorkers(false);
    }

    private void interruptIdleWorkers(boolean onlyOne) {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            // 遍历线程集合,如果不处于中断状态就中断
            for (Worker w : workers) {
                Thread t = w.thread;
                if (!t.isInterrupted() && w.tryLock()) {
                    try {
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    } finally {
                        w.unlock();
                    }
                }
                if (onlyOne)
                    break;
            }
        } finally {
            mainLock.unlock();
        }
    }
    // 尝试把状态最后变成Terminated
    final void tryTerminate() {
        for (;;) {
            int c = ctl.get();
            // 判断中断的准入条件
            // 正在运行的不行,处于TIDYING不行,处于SHUTDOWN 但任务队列不为空的不行
            if (isRunning(c) ||
                runStateAtLeast(c, TIDYING) ||
                (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
                return;
            // 如果工作线程不为0,就中断空闲线程
            if (workerCountOf(c) != 0) { // Eligible to terminate
                interruptIdleWorkers(ONLY_ONE);
                return;
            }

            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
                    try {
                        // 当线程终止了就调用这个方法
                        terminated();
                    } finally {
                        // 最后把ctl置0
                        ctl.set(ctlOf(TERMINATED, 0));
                        termination.signalAll();
                    }
                    return;
                }
            } finally {
                mainLock.unlock();
            }
            // else retry on failed CAS
        }
    }
   // 马上关闭线程池,把状态变STOP,终止正在执行的线程,返回等待执行的任务集合
   public List<Runnable> shutdownNow() {
        List<Runnable> tasks;
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            checkShutdownAccess();
            advanceRunState(STOP);
            interruptWorkers();
            tasks = drainQueue();
        } finally {
            mainLock.unlock();
        }
        tryTerminate();
        return tasks;
    }
    // 把任务队列里面的任务通过drainTo()放到一个list里面,如果是延时的队列,则可能失败,需要
    // 一个一个的删除
    private List<Runnable> drainQueue() {
        BlockingQueue<Runnable> q = workQueue;
        ArrayList<Runnable> taskList = new ArrayList<Runnable>();
        q.drainTo(taskList);
        if (!q.isEmpty()) {
            for (Runnable r : q.toArray(new Runnable[0])) {
                if (q.remove(r))
                    taskList.add(r);
            }
        }
        return taskList;
    }

第五部分,拒绝策略:

线程池产生拒绝的场景一般有两个:一个是线程池异常关闭了,另一个是添加到线程池的任务数量已经超过阻塞队里最大值了

四种拒绝策略:

AbortPolicy -- 当任务添加到线程池中被拒绝时,它将抛出 RejectedExecutionException 异常。 默认的拒绝策略!

CallerRunsPolicy -- 当任务添加到线程池中被拒绝时,会在线程池当前正在运行的Thread线程池中处理被拒绝的任务。马上执行。

DiscardOldestPolicy -- 当任务添加到线程池中被拒绝时,线程池会放弃等待队列中最旧的未处理任务,然后将被拒绝的任务添加到等待队列中。

DiscardPolicy -- 当任务添加到线程池中被拒绝时,线程池将丢弃被拒绝的任务。

使用方式:

// 构造函数指定
static ThreadPoolExecutor threadPool = new ThreadPoolExecutor(3, 5, 2000, TimeUnit.MILLISECONDS, queue, new ThreadPoolExecutor.AbortPolicy());

// 线程池的set方法
threadPool.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章