jvm調優(一)

jvm參數含義

參數名稱 含義 默認值
-Xms 初始堆大小 物理內存的1/64(<1GB) 默認(MinHeapFreeRatio參數可以調整)空餘堆內存小於40%時,JVM就會增大堆直到-Xmx的最大限制.
-Xmx 最大堆大小 物理內存的1/4(<1GB) 默認(MaxHeapFreeRatio參數可以調整)空餘堆內存大於70%時,JVM會減少堆直到 -Xms的最小限制
-Xmn 年輕代大小(1.4or lator) 注意:此處的大小是(eden+ 2 survivor space).與jmap -heap中顯示的New gen是不同的。整個堆大小=年輕代大小 + 年老代大小 + 持久代大小.增大年輕代後,將會減小年老代大小.此值對系統性能影響較大,Sun官方推薦配置爲整個堆的3/8
-XX:NewSize 設置年輕代大小(for 1.3/1.4)
-XX:MaxNewSize 年輕代最大值(for 1.3/1.4)
-XX:PermSize 設置持久代(perm gen)初始值 物理內存的1/64
-XX:MaxPermSize 設置持久代最大值 物理內存的1/4
-Xss 每個線程的堆棧大小 JDK5.0以後每個線程堆棧大小爲1M,以前每個線程堆棧大小爲256K.更具應用的線程所需內存大小進行 調整.在相同物理內存下,減小這個值能生成更多的線程.但是操作系統對一個進程內的線程數還是有限制的,不能無限生成,經驗值在3000~5000左右。一般小的應用, 如果棧不是很深, 應該是128k夠用的 大的應用建議使用256k。這個選項對性能影響比較大,需要嚴格的測試。(校長)和threadstacksize選項解釋很類似,官方文檔似乎沒有解釋,在論壇中有這樣一句話:"”-Xss is translated in a VM flag named ThreadStackSize”。一般設置這個值就可以了。
-XX:ThreadStackSize Thread Stack Size (0 means use default stack size) [Sparc: 512; Solaris x86: 320 (was 256 prior in 5.0 and earlier); Sparc 64 bit: 1024; Linux amd64: 1024 (was 0 in 5.0 and earlier); all others 0.]
-XX:NewRatio 年輕代(包括Eden和兩個Survivor區)與年老代的比值(除去持久代) -XX:NewRatio=4表示年輕代與年老代所佔比值爲1:4,年輕代佔整個堆棧的1/5。Xms=Xmx並且設置了Xmn的情況下,該參數不需要進行設置。
-XX:SurvivorRatio Eden區與Survivor區的大小比值 設置爲8,則兩個Survivor區與一個Eden區的比值爲2:8,一個Survivor區佔整個年輕代的1/10
-XX:LargePageSizeInBytes 內存頁的大小不可設置過大, 會影響Perm的大小 =128m
-XX:+UseFastAccessorMethods 原始類型的快速優化
-XX:+DisableExplicitGC 關閉System.gc() 這個參數需要嚴格的測試
-XX:MaxTenuringThreshold 垃圾最大年齡 如果設置爲0的話,則年輕代對象不經過Survivor區,直接進入年老代. 對於年老代比較多的應用,可以提高效率.如果將此值設置爲一個較大值,則年輕代對象會在Survivor區進行多次複製,這樣可以增加對象再年輕代的存活 時間,增加在年輕代即被回收的概率。該參數只有在串行GC時纔有效.
-XX:+AggressiveOpts 加快編譯
-XX:+UseBiasedLocking 鎖機制的性能改善
-Xnoclassgc 禁用垃圾回收
-XX:SoftRefLRUPolicyMSPerMB 每兆堆空閒空間中SoftReference的存活時間 1s softly reachable objects will remain alive for some amount of time after the last time they were referenced. The default value is one second of lifetime per free megabyte in the heap
-XX:PretenureSizeThreshold 對象超過多大是直接在舊生代分配 0 單位字節 新生代採用Parallel Scavenge GC時無效。另一種直接在舊生代分配的情況是大的數組對象,且數組中無外部引用對象.
-XX:TLABWasteTargetPercent TLAB佔eden區的百分比 1%
-XX:+CollectGen0First FullGC時是否先YGC false

並行收集器參數

參數名稱 含義 默認值
-XX:+UseParallelGC Full GC採用parallel MSC(此項待驗證) 選擇垃圾收集器爲並行收集器.此配置僅對年輕代有效.即上述配置下,年輕代使用併發收集,而年老代仍舊使用串行收集.(此項待驗證)
-XX:+UseParNewGC 設置年輕代爲並行收集 可與CMS收集同時使用JDK5.0以上,JVM會根據系統配置自行設置,所以無需再設置此值
-XX:ParallelGCThreads 並行收集器的線程數 此值最好配置與處理器數目相等 同樣適用於CMS
-XX:+UseParallelOldGC 年老代垃圾收集方式爲並行收集(Parallel Compacting) 這個是JAVA 6出現的參數選項
-XX:MaxGCPauseMillis 每次年輕代垃圾回收的最長時間(最大暫停時間) 如果無法滿足此時間,JVM會自動調整年輕代大小,以滿足此值.
-XX:+UseAdaptiveSizePolicy 自動選擇年輕代區大小和相應的Survivor區比例 設置此選項後,並行收集器會自動選擇年輕代區大小和相應的Survivor區比例,以達到目標系統規定的最低相應時間或者收集頻率等,此值建議使用並行收集器時,一直打開.
-XX:GCTimeRatio 設置垃圾回收時間佔程序運行時間的百分比 公式爲1/(1+n)
-XX:+ScavengeBeforeFullGC Full GC前調用YGC true Do young generation GC prior to a full GC. (Introduced in 1.4.1.)

cms參數

參數名稱 含義 默認值
-XX:+UseConcMarkSweepGC 使用CMS內存收集 測試中配置這個以後,-XX:NewRatio=4的配置失效了,原因不明.所以,此時年輕代大小最好用-Xmn設置.
-XX:+AggressiveHeap 試圖是使用大量的物理內存。長時間大內存使用的優化,能檢查計算資源(內存, 處理器數量)。至少需要256MB內存。大量的CPU/內存, (在1.4.1在4CPU的機器上已經顯示有提升)
-XX:CMSFullGCsBeforeCompaction 多少次後進行內存壓縮 由於併發收集器不對內存空間進行壓縮,整理,所以運行一段時間以後會產生"碎片",使得運行效率降低.此值設置運行多少次GC以後對內存空間進行壓縮,整理.
-XX:+CMSParallelRemarkEnabled 降低標記停頓
-XX+UseCMSCompactAtFullCollection 在FULL GC的時候, 對年老代的壓縮 CMS是不會移動內存的, 因此, 這個非常容易產生碎片, 導致內存不夠用, 因此, 內存的壓縮這個時候就會被啓用。 增加這個參數是個好習慣。可能會影響性能,但是可以消除碎片
-XX:+UseCMSInitiatingOccupancyOnly 使用手動定義初始化定義開始CMS收集 禁止hostspot自行觸發CMS GC
-XX:CMSInitiatingOccupancyFraction=70 使用cms作爲垃圾回收。使用70%後開始CMS收集 92 爲了保證不出現promotion failed(見下面介紹)錯誤,該值的設置需要滿足CMSInitiatingOccupancyFraction計算公式
-XX:CMSInitiatingPermOccupancyFraction 設置Perm Gen使用到達多少比率時觸發 92
-XX:+CMSIncrementalMode 設置爲增量模式 用於單CPU情況
-XX:+CMSClassUnloadingEnabled

輔助信息

參數名稱 含義 默認值
-XX:+PrintGC 輸出形式:[GC 118250K->113543K(130112K), 0.0094143 secs]。[Full GC 121376K->10414K(130112K), 0.0650971 secs]
-XX:+PrintGCDetails 輸出形式:[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs]。[GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured: 112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs]
-XX:+PrintGCTimeStamps
-XX:+PrintGC:PrintGCTimeStamps 可與-XX:+PrintGC -XX:+PrintGCDetails混合使用。輸出形式:11.851: [GC 98328K->93620K(130112K), 0.0082960 secs]
-XX:+PrintGCApplicationStoppedTime 打印垃圾回收期間程序暫停的時間.可與上面混合使用 輸出形式:Total time for which application threads were stopped: 0.0468229 seconds
-XX:+PrintGCApplicationConcurrentTime 打印每次垃圾回收前,程序未中斷的執行時間.可與上面混合使用 輸出形式:Application time: 0.5291524 seconds
-XX:+PrintHeapAtGC 打印GC前後的詳細堆棧信息
-Xloggc:filename 把相關日誌信息記錄到文件以便分析.與上面幾個配合使用
-XX:+PrintClassHistogram garbage collects before printing the histogram.
-XX:+PrintTLAB 查看TLAB空間的使用情況
XX:+PrintTenuringDistribution 查看每次minor GC後新的存活週期的閾值 Desired survivor size 1048576 bytes, new threshold 7 (max 15)。new threshold 7即標識新的存活週期的閾值爲7。

常見異常一般解決方案:

年老代堆空間被佔滿
異常: java.lang.OutOfMemoryError: Java heap space
這是最典型的內存泄漏方式,簡單說就是所有堆空間都被無法回收的垃圾對象佔滿,虛擬機無法再在分配新空間
這種方式解決起來也比較容易,一般就是根據垃圾回收前後情況對比,同時根據對象引用情況(常見的集合對象引用)分析,基本都可以找到泄漏點。

持久代被佔滿
異常:java.lang.OutOfMemoryError: PermGen space
說明:
Perm空間被佔滿。無法爲新的class分配存儲空間而引發的異常。這個異常以前是沒有的,但是在Java反射大量使用的今天這個異常比較常見了。主要原因就是大量動態反射生成的類不斷被加載,最終導致Perm區被佔滿。
更可怕的是,不同的classLoader即便使用了相同的類,但是都會對其進行加載,相當於同一個東西,如果有N個classLoader那麼他將會被加載N次。因此,某些情況下,這個問題基本視爲無解。當然,存在大量classLoader和大量反射類的情況其實也不多。
解決:
1、 -XX:MaxPermSize=16m
2、 換用JDK。比如JRocket

堆棧溢出
異常:java.lang.StackOverflowError
說明:這個就不多說了,一般就是遞歸沒返回,或者循環調用造成

線程堆棧滿
異常:Fatal: Stack size too small
說明:java中一個線程的空間大小是有限制的。JDK5.0以後這個值是1M。與這個線程相關的數據將會保存在其中。但是當線程空間滿了以後,將會出現上面異常。
解決:增加線程棧大小。-Xss2m。但這個配置無法解決根本問題,還要看代碼部分是否有造成泄漏的部分。

系統內存被佔滿
異常:java.lang.OutOfMemoryError: unable to create new native thread
說明:
這個異常是由於操作系統沒有足夠的資源來產生這個線程造成的。系統創建線程時,除了要在Java堆中分配內存外,操作系統本身也需要分配資源來創建線程。因此,當線程數量大到一定程度以後,堆中或許還有空間,但是操作系統分配不出資源來了,就出現這個異常了。
分配給Java虛擬機的內存愈多,系統剩餘的資源就越少,因此,當系統內存固定時,分配給Java虛擬機的內存越多,那麼,系統總共能夠產生的線程也就越少,兩者成反比的關係。同時,可以通過修改-Xss來減少分配給單個線程的空間,也可以增加系統總共內生產的線程數。
解決:
1、 重新設計系統減少線程數量。
2、 線程數量不能減少的情況下,通過-Xss減小單個線程大小。以便能生產更多的線程。

Full GC

對整個堆進行整理,包括Young、Tenured和Perm。Full GC因爲需要對整個堆進行回收,所以比Scavenge GC要慢,因此應該儘可能減少Full GC的次數。在對jvm調優的過程中,很大一部分工作就是對Full GC的調節。有如下原因可能導致Full GC:

1、年老代(Tenured)被寫滿
2、持久代(Perm)被寫滿
3、System.gc()被顯示調用
3、上一次GC之後Heap的各域分配策略動態變化

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章