【騰訊Bugly乾貨分享】Android 新一代多渠道打包神器 原

關於作者: 李濤,騰訊Android工程師,14年加入騰訊SNG增值產品部,期間主要負責手Q動漫、企鵝電競等項目的功能開發和技術優化。業務時間喜歡折騰新技術,寫一些技術文章,個人技術博客:www.ltlovezh.com 。

ApkChannelPackage是一種快速多渠道打包工具,同時支持基於V1和V2簽名進行渠道打包。插件本身會自動檢測Apk使用的簽名方法,並選擇合適的多渠道打包方式,對使用者來說完全透明。

Github地址: https://github.com/ltlovezh/ApkChannelPackage

概述

衆所周知,因爲國內Android應用分發市場的現狀,我們在發佈APP時,一般需要生成多個渠道包,上傳到不同的應用市場。這些渠道包需要包含不同的渠道信息,在APP和後臺交互或者數據上報時,會帶上各自的渠道信息。這樣,我們就能統計到每個分發市場的下載數、用戶數等關鍵數據。

普通的多渠道打包方案

既然我們需要進行多渠道打包,那我們就看下最常見的多渠道打包方案。

Android Gradle Plugin

Gradle Plugin本身提供了多渠道的打包策略:

首先,在AndroidManifest.xml中添加渠道信息佔位符:

<meta-data android:name="InstallChannel" android:value="${InstallChannel}" />

然後,通過Gradle Plugin提供的productFlavors標籤,添加渠道信息:

productFlavors{    "YingYongBao"{
        manifestPlaceholders = [InstallChannel : "YingYongBao"]
    }    "360"{
        manifestPlaceholders = [InstallChannel : "360"]
    }
}

這樣,Gradle編譯生成多渠道包時,會用不同的渠道信息替換AndroidManifest.xml中的佔位符。我們在代碼中,也就可以直接讀取AndroidManifest.xml中的渠道信息了。

但是,這種方式存在一些缺點:

  1. 每生成一個渠道包,都要重新執行一遍構建流程,效率太低,只適用於渠道較少的場景。

  2. Gradle會爲每個渠道包生成一個不同的BuildConfig.java類,記錄渠道信息,導致每個渠道包的DEX的CRC值都不同。一般情況下,這是沒有影響的。但是如果你使用了微信的Tinker熱補丁方案,那麼就需要爲不同的渠道包打不同的補丁,這完全是不可以接受的。(因爲Tinker是通過對比基礎包APK和新包APK生成差分補丁,然後再把補丁和基礎包APK一起合成新包APK。這就要求用於生成差分補丁的基礎包DEX和用於合成新包的基礎包DEX是完全一致的,即:每一個基礎渠道包的DEX文件是完全一致的,不然就會合成失敗)

ApkTool

ApkTool是一個逆向分析工具,可以把APK解開,添加代碼後,重新打包成APK。因此,基於ApkTool的多渠道打包方案分爲以下幾步:

  1. 複製一份新的APK
  2. 通過ApkTool工具,解壓APK(apktool d origin.apk)
  3. 刪除已有簽名信息
  4. 添加渠道信息(可以在APK的任何文件添加渠道信息)
  5. 通過ApkTool工具,重新打包生成新APK(apktool b newApkDir)
  6. 重新簽名

經過測試,這種方案完全是可行的。

優點:

不需要重新構建新渠道包,僅需要複製修改就可以了。並且因爲是重新簽名,所以同時支持V1和V2簽名。

缺點:

  1. ApkTool工具不穩定,曾經遇到過升級Gradle Plugin版本後,低版本ApkTool解壓APK失敗的情況。
  2. 生成新渠道包時,需要重新解包、打包和簽名,而這幾步操作又是相對比較耗時的。經過測試:生成企鵝電競10個渠道包需要16分鐘左右,雖然比Gradle Plugin方案減少很多耗時。但是若需要同時生成上百個渠道包,則需要幾個小時,顯然不適合渠道非常多的業務場景。

那有沒有一種方案,可以在添加渠道信息後,不需要重新簽名那?

首先我們要了解一下APK的簽名和校驗機制。

數據摘要、數字簽名和數字證書

在進一步學習V1和V2簽名之前,我們有必要學習一下簽名相關的基礎知識。

數據摘要

數據摘要算法是一種能產生特定輸出格式的算法,其原理是根據一定的運算規則對原始數據進行某種形式的信息提取,被提取出的信息就是原始數據的消息摘要,也稱爲數據指紋。

一般情況下,數據摘要算法具有以下特點:

  1. 無論輸入數據有多大(長),計算出來的數據摘要的長度總是固定的。例如:MD5算法計算出的數據摘要有128Bit。

  2. 一般情況下(不考慮碰撞的情況下),只要原始數據不同,那麼其對應的數據摘要就不會相同。同時,只要原始數據有任何改動,那麼其數據摘要也會完全不同。即:相同的原始數據必有相同的數據摘要,不同的原始數據,其數據摘要也必然不同。

  3. 不可逆性,即只能正向提取原始數據的數據摘要,而無法從數據摘要中恢復出原始數據。

著名的摘要算法有RSA公司的MD5算法和SHA系列算法。

數字簽名和數字證書

數字簽名和數字證書是成對出現的,兩者不可分離(數字簽名主要用來校驗數據的完整性,數字證書主要用來確保公鑰的安全發放)。

要明白數字簽名的概念,必須要了解數據的加密、傳輸和校驗流程。一般情況下,要實現數據的可靠通信,需要解決以下兩個問題:

  1. 確定數據的來源是其真正的發送者。
  2. 確保數據在傳輸過程中,沒有被篡改,或者若被篡改了,可以及時發現。

而數字簽名,就是爲了解決這兩個問題而誕生的。

首先,數據的發送者需要先申請一對公私鑰對,並將公鑰交給數據接收者。

然後,若數據發送者需要發送數據給接收者,則首先要根據原始數據,生成一份數字簽名,然後把原始數據和數字簽名一起發送給接收者。

數字簽名由以下兩步計算得來:

  1. 計算髮送數據的數據摘要
  2. 用私鑰對提取的數據摘要進行加密

這樣,數據接收者拿到的消息就包含了兩塊內容:

  1. 原始數據內容
  2. 附加的數字簽名

接下來,接收者就會通過以下幾步,校驗數據的真實性:

  1. 用相同的摘要算法計算出原始數據的數據摘要。
  2. 用預先得到的公鑰解密數字簽名。
  3. 對比簽名得到的數據是否一致,如果一致,則說明數據沒有被篡改,否則數據就是髒數據了。

因爲私鑰只有發送者纔有,所以其他人無法僞造數字簽名。這樣通過數字簽名就確保了數據的可靠傳輸。

綜上所述,數字簽名就是只有發送者才能產生的別人無法僞造的一段數字串,這段數字串同時也是對發送者發送數據真實性的一個有效證明。

想法雖好,但是上面的整個流程,有一個前提,就是數據接收者能夠正確拿到發送者的公鑰。如果接收者拿到的公鑰被篡改了,那麼壞人就會被當成好人,而真正的數據發送者發送的數據則會被視作髒數據。那怎麼才能保證公鑰的安全性那?這就要靠數字證書來解決了。

數字證書是由有公信力的證書中心(CA)頒發給申請者的證書,主要包含了:證書的發佈機構、證書的有效期、申請者的公鑰、申請者信息、數字簽名使用的算法,以及證書內容的數字簽名。

可見,數字證書也用到了數字簽名技術。只不過簽名的內容是數據發送方的公鑰,以及一些其它證書信息。

這樣數據發送者發送的消息就包含了三部分內容:

  1. 原始數據內容
  2. 附加的數字簽名
  3. 申請的數字證書。

接收者拿到數據後,首先會根據CA的公鑰,解碼出發送者的公鑰。然後就與上面的校驗流程完全相同了。

所以,數字證書主要解決了公鑰的安全發放問題。

因此,包含數字證書的整個簽名和校驗流程如下圖所示:

V1簽名和多渠道打包方案

V1簽名機制

默認情況下,APK使用的就是V1簽名。解壓APK後,在META-INF目錄下,可以看到三個文件:MANIFEST.MF、CERT.SF、CERT.RSA。它們都是V1簽名的產物。其中,MANIFEST.MF文件內容如下所示:

它記錄了APK中所有原始文件的數據摘要的Base64編碼,而數據摘要算法就是SHA1CERT.SF文件內容如下所示:

SHA1-Digest-Manifest-Main-Attributes主屬性記錄了MANIFEST.MF文件所有主屬性的數據摘要的Base64編碼。SHA1-Digest-Manifest則記錄了整個MANIFEST.MF文件的數據摘要的Base64編碼。 其餘的普通屬性則和MANIFEST.MF中的屬性一一對應,分別記錄了對應數據塊的數據摘要的Base64編碼。例如:CERT.SF文件中skin_drawable_btm_line.xml對應的SHA1-Digest,就是下面內容的數據摘要的Base64編碼。

Name: res/drawable/skin_drawable_btm_line.xml
SHA1-Digest: JqJbk6/AsWZMcGVehCXb33Cdtrk=
\r\n

這裏要注意的是:最後一行的換行符是必不可少,需要參與計算的。

CERT.RSA文件包含了對CERT.SF文件的數字簽名和開發者的數字證書。RSA就是計算數字簽名使用的非對稱加密算法。

V1簽名的詳細流程可參考SignApk.java,整個簽名流程如下圖所示:

整個簽名機制的最終產物就是MANIFEST.MF、CERT.SF、CERT.RSA三個文件。

V1校驗流程

在安裝APK時,Android系統會校驗簽名,檢查APK是否被篡改。代碼流程是:PackageManagerService.java -> PackageParser.javaPackageParser類負責V1簽名的具體校驗。整個校驗流程如下圖所示:

若中間任何一步校驗失敗,APK就不能安裝。

OK,瞭解了V1的簽名和校驗流程。我們來看下,V1簽名是怎麼保證APK文件不被篡改的?

首先,如果破壞者修改了APK中的任何文件,那麼被篡改文件的數據摘要的Base64編碼就和MANIFEST.MF文件的記錄值不一致,導致校驗失敗。

其次,如果破壞者同時修改了對應文件在MANIFEST.MF文件中的Base64值,那麼MANIFEST.MF中對應數據塊的Base64值就和CERT.SF文件中的記錄值不一致,導致校驗失敗。

最後,如果破壞者更進一步,同時修改了對應文件在CERT.SF文件中的Base64值,那麼CERT.SF的數字簽名就和CERT.RSA記錄的簽名不一致,也會校驗失敗。

那有沒有可能繼續僞造CERT.SF的數字簽名那?理論上不可能,因爲破壞者沒有開發者的私鑰。那破壞者是不是可以用自己的私鑰和數字證書重新簽名那,這倒是完全可以!

綜上所述,任何對APK文件的修改,在安裝時都會失敗,除非對APK重新簽名。但是相同包名,不同簽名的APK也是不能同時安裝的。

APK文件結構

由上述V1簽名和校驗機制可知,修改APK中的任何文件都會導致安裝失敗!那怎麼添加渠道信息那?只能從APK的結構入手了。

APK文件本質上是一個ZIP壓縮包,而ZIP格式是固定的,主要由三部分構成,如下圖所示:

第一部分是內容塊,所有的壓縮文件都在這部分。每個壓縮文件都有一個local file header,主要記錄了文件名、壓縮算法、壓縮前後的文件大小、修改時間、CRC32值等。

第二部分稱爲中央目錄,包含了多個central directory file header(和第一部分的local file header一一對應),每個中央目錄文件頭主要記錄了壓縮算法、註釋信息、對應local file header的偏移量等,方便快速定位數據。

最後一部分是EOCD,主要記錄了中央目錄大小、偏移量和ZIP註釋信息等,其詳細結構如下圖所示:

根據之前的V1簽名和校驗機制可知,V1簽名只會檢驗第一部分的所有壓縮文件,而不理會後兩部分內容。因此,只要把渠道信息寫入到後兩塊內容就可以通過V1校驗,而EOCD的註釋字段無疑是最好的選擇。

基於V1簽名的多渠道打包方案

既然找到了突破口,那麼基於V1簽名的多渠道打包方案就應運而生:在APK文件的註釋字段,添加渠道信息。

整個方案包括以下幾步:

  1. 複製APK
  2. 找到EOCD數據塊
  3. 修改註釋長度
  4. 添加渠道信息
  5. 添加渠道信息長度
  6. 添加魔數
  7. 添加渠道信息後的EOCD數據塊如下所示:

這裏添加魔數的好處是方便從後向前讀取數據,定位渠道信息。 因此,讀取渠道信息包括以下幾步:

  1. 定位到魔數
  2. 向前讀兩個字節,確定渠道信息的長度LEN
  3. 繼續向前讀LEN字節,就是渠道信息了。

通過16進制編輯器,可以查看到添加渠道信息後的APK(小端模式),如下所示:

6C 74 6C 6F 76 75 7A 68是魔數,04 00表示渠道信息長度爲4,6C 65 6F 6E就是渠道信息leon了。0E 00就是APK註釋長度了,正好是15。

雖說整個方案很清晰,但是在找到EOCD數據塊這步遇到一個問題。如果APK本身沒有註釋,那最後22字節就是EOCD。但是若APK本身已經包含了註釋字段,那怎麼確定EOCD的起始位置那?這裏借鑑了系統V2簽名確定EOCD位置的方案。整個計算流程如下圖所示:

整個方案介紹完了,該方案的最大優點就是:不需要解壓縮APK,不需要重新簽名,只需要複製APK,在註釋字段添加渠道信息。每個渠道包僅需幾秒的耗時,非常適合渠道較多的APK。

但是好景不長,Android7.0之後新增了V2簽名,該簽名會校驗整個APK的數據摘要,導致上述渠道打包方案失效。所以如果想繼續使用上述方案,需要關閉Gradle Plugin中的V2簽名選項,禁用V2簽名。

V2簽名和多渠道打包方案

爲什麼需要V2簽名

從前面的V1簽名介紹,可以知道V1存在兩個弊端:

  1. MANIFEST.MF中的數據摘要是基於原始未壓縮文件計算的。因此在校驗時,需要先解壓出原始文件,才能進行校驗。而解壓操作無疑是耗時的。

  2. V1簽名僅僅校驗APK第一部分中的文件,缺少對APK的完整性校驗。因此,在簽名後,我們還可以修改APK文件,例如:通過zipalign進行字節對齊後,仍然可以正常安裝。

正是基於這兩點,Google提出了V2簽名,解決了上述兩個問題:

  1. V2簽名是對APK本身進行數據摘要計算,不存在解壓APK的操作,減少了校驗時間。

  2. V2簽名是針對整個APK進行校驗(不包含簽名塊本身),因此對APK的任何修改(包括添加註釋、zipalign字節對齊)都無法通過V2簽名的校驗。

關於第一點的耗時問題,這裏有一份實驗室數據(Nexus 6P、Android 7.1.1)可供參考。

APK安裝耗時對比取5次平均耗時(秒)
V1簽名APK11.64
V2簽名APK4.42

可見,V2簽名對APK的安裝速度還是提升不少的。

V2簽名機制

不同於V1,V2簽名會生成一個簽名塊,插入到APK中。因此,V2簽名後的APK結構如下圖所示:

APK簽名塊位於中央目錄之前,文件數據之後。V2簽名同時修改了EOCD中的中央目錄的偏移量,使簽名後的APK還符合ZIP結構。

APK簽名塊的具體結構如下圖所示:

首先是8字節的簽名塊大小,此大小不包含該字段本身的8字節;其次就是ID-Value序列,就是一個4字節的ID和對應的數據;然後又是一個8字節的簽名塊大小,與開始的8字節是相等的;最後是16字節的簽名塊魔數。

其中,ID爲0x7109871a對應的Value就是V2簽名塊數據。

V2簽名塊的生成可參考ApkSignerV2,整體結構和流程如下圖所示:

  1. 首先,根據多個簽名算法,計算出整個APK的數據摘要,組成左上角的APK數據摘要集;

  2. 接着,把最左側一列的數據摘要數字證書額外屬性組裝起來,形成類似於V1簽名的“MF”文件(第二列第一行);

  3. 其次,再用相同的私鑰,不同的簽名算法,計算出“MF”文件的數字簽名,形成類似於V1簽名的“SF”文件(第二列第二行);

  4. 然後,把第二列的類似MF文件類似SF文件開發者公鑰一起組裝成通過單個keystore簽名後的v2簽名塊(第三列第一行)。

  5. 最後,把多個keystore簽名後的簽名塊組裝起來,就是完整的V2簽名塊了(Android中允許使用多個keystore對apk進行簽名)。

上述流程比較繁瑣。簡而言之,單個keystore簽名塊主要由三部分組成,分別是上圖中第二列的三個數據塊:類似MF文件類似SF文件開發者公鑰,其結構如下圖所示:

除此之外,Google也優化了計算數據摘要的算法,使得可以並行計算,如下圖所示:

數據摘要的計算包括以下幾步:

  1. 首先,將上述APK中文件內容塊、中央目錄、EOCD按照1MB大小分割成一些小塊。
  2. 然後,計算每個小塊的數據摘要,基礎數據是0xa5 + 塊字節長度 + 塊內容。
  3. 最後,計算整體的數據摘要,基礎數據是0x5a + 數據塊的數量 + 每個數據塊的摘要內容。

這樣,每個數據塊的數據摘要就可以並行計算,加快了V2簽名和校驗的速度。

V2校驗流程

Android Gradle Plugin2.2之上默認會同時開啓V1和V2簽名,同時包含V1和V2簽名的CERT.SF文件會有一個特殊的主屬性,如下圖所示:

該屬性會強制APK走V2校驗流程(7.0之上),以充分利用V2簽名的優勢(速度快和更完善的校驗機制)。

因此,同時包含V1和V2簽名的APK的校驗流程如下所示:

簡而言之:優先校驗V2,沒有或者不認識V2,則校驗V1。

這裏引申出另外一個問題:APK簽名時,只有V2簽名,沒有V1簽名行不行? 經過嘗試,這種情況是可以編譯通過的,並且在Android 7.0之上也可以正確安裝和運行。但是7.0之下,因爲不認識V2,又沒有V1簽名,所以會報沒有簽名的錯誤。

OK,明確了Android平臺對V1和V2簽名的校驗選擇之後,我們來看下V2簽名的具體校驗流程(PackageManagerService.java -> PackageParser.java -> ApkSignatureSchemeV2Verifier.java),如下圖所示:

其中,最強簽名算法是根據該算法使用的數據摘要算法來對比產生的,比如:SHA512 > SHA256。

校驗成功的定義是至少找到一個keystore對應的簽名塊,並且所有簽名塊都按照上述流程校驗成功。

下面我們來看下V2簽名是怎麼保證APK不被篡改的?

  1. 首先,如果破壞者修改了APK文件的任何部分(簽名塊本身除外),那麼APK的數據摘要就和“MF”數據塊中記錄的數據摘要不一致,導致校驗失敗。

  2. 其次,如果破壞者同時修改了“MF”數據塊中的數據摘要,那麼“MF”數據塊的數字簽名就和“SF”數據塊中記錄的數字簽名不一致,導致校驗失敗。

  3. 然後,如果破壞者使用自己的私鑰去加密生成“SF”數據塊,那麼使用開發者的公鑰去解密“SF”數據塊中的數字簽名就會失敗;

  4. 最後,更進一步,若破壞者甚至替換了開發者公鑰,那麼使用數字證書中的公鑰校驗簽名塊中的公鑰就會失敗,這也正是數字證書的作用。

綜上所述,任何對APK的修改,在安裝時都會失敗,除非對APK重新簽名。但是相同包名,不同簽名的APK也是不能同時安裝的。

到這裏,V2簽名已經介紹完了。但是在最後一步“數據摘要校驗”這裏,隱藏了一個點,不知道有沒有人發現?

因爲,我們V2簽名塊中的數據摘要是針對APK的文件內容塊、中央目錄和EOCD三塊內容計算的。但是在寫入簽名塊後,修改了EOCD中的中央目錄偏移量,那麼在進行V2簽名校驗時,理論上在“數據摘要校驗”這步應該會校驗失敗啊!但是爲什麼V2簽名可以校驗通過那?

這個問題很重要,因爲我們下面要介紹的基於V2簽名的多渠道打包方案也會修改EOCD的中央目錄偏移量。

其實也很簡單,原來Android系統在校驗APK的數據摘要時,首先會把EOCD的中央目錄偏移量替換成簽名塊的偏移量,然後再計算數據摘要。而簽名塊的偏移量不就是v2簽名之前的中央目錄偏移量嘛!!!,因此,這樣計算出的數據摘要就和“MF”數據塊中的數據摘要完全一致了。具體代碼邏輯,可參考ApkSignatureSchemeV2Verifier.java的416 ~ 420行。

基於V2簽名的多渠道打包方案

在上節V2簽名的校驗流程中,有一個很重要的細節:Android系統只會關注ID爲0x7109871a的V2簽名塊,並且忽略其他的ID-Value,同時V2簽名只會保護APK本身,不包含簽名塊。

因此,基於V2簽名的多渠道打包方案就應運而生:在APK簽名塊中添加一個ID-Value,存儲渠道信息。

整個方案包括以下幾步:

  1. 找到APK的EOCD塊
  2. 找到APK簽名塊
  3. 獲取已有的ID-Value Pair
  4. 添加包含渠道信息的ID-Value
  5. 基於所有的ID-Value生成新的簽名塊
  6. 修改EOCD的中央目錄的偏移量(上面已介紹過:修改EOCD的中央目錄偏移量,不會導致數據摘要校驗失敗)
  7. 用新的簽名塊替代舊的簽名塊,生成帶有渠道信息的APK

實際上,除了渠道信息,我們可以在APK簽名塊中添加任何輔助信息。

通過16進制編輯器,可以查看到添加渠道信息後的APK(小端模式),如下所示:

6C 65 6F 6E就是我們的渠道信息leon。向前4個字節:FF 55 11 88就是我們添加的ID,再向前8個字節:08 00 00 00 00 00 00 00就是我們的ID-Value的長度,正好是8。

整個方案介紹完了,該方案的最大優點就是:支持7.0之上新增的V2簽名,同時兼有V1方案的所有優點。

多渠道包的強校驗

那麼如何保證通過這些方案生成的渠道包,能夠在所有Android平臺上正確安裝那?

原來Google提供了一個同時支持V1和V2簽名和校驗的工具:apksig。它包括一個apksigner命令行和一個apksig類庫。其中前者就是Android SDK build-tools下面的命令行工具。而我們正是藉助後面的apksig來進行渠道包強校驗,它可以保證渠道包在apk Minsdk ~ 最高版本之間都校驗通過。詳細代碼可參考VerifyApk.java

多渠道打包工具對比

目前市面上的多渠道打包工具主要有packer-ng-plugin和美團的Walle。下表是我們的ApkChannelPackage和它們之間的簡單對比。

這裏我之所以同時支持V1和V2簽名方案,主要是擔心後續Android平臺加強簽名校驗機制,導致V2多渠道打包方案行不通,可以無痛切換到V1簽名方案。後續我也會盡快支持命令行工具。

ApkChannelPackage插件接入

多渠道打包方式選擇

目前Gradle Plugin 2.2以上默認開啓V2簽名,所以如果想關閉V2簽名,可將下面的v2SigningEnabled設置爲false。

signingConfigs {
        release {
            ...
            v1SigningEnabled true
            v2SigningEnabled false
        }

        debug {
            ...
            v1SigningEnabled true
            v2SigningEnabled false
        }
    }

接入流程

1.在根工程的build.gradle中,添加對打包Plugin的依賴:

dependencies {
        classpath 'com.android.tools.build:gradle:2.2.0'
        classpath 'com.leon.channel:plugin:1.0.1'}

2.在主App工程的build.gradle中,添加對ApkChannelPackage Plugin的引用:

apply plugin: 'channel'

3.在主App工程的build.gradle中,添加讀取渠道信息的helper類庫依賴:

dependencies {
    compile 'com.leon.channel:helper:1.0.1'}

4.在gradle.properties文件中,配置渠道文件名稱

channel_file=channel.txt

其中channel.txt即爲包含渠道信息的文件,需放置在根工程目錄下,一行一個渠道信息。

5.渠道包信息配置

若是直接編譯生成多渠道包,則通過channel標籤配置:

channel{    //多渠道包的輸出目錄,默認爲new File(project.buildDir,"channel")
    baseOutputDir = new File(project.buildDir,"xxx")    //多渠道包的命名規則,默認爲:${appName}-${versionName}-${versionCode}-${flavorName}-${buildType}
    apkNameFormat ='${appName}-${versionName}-${versionCode}-${flavorName}-${buildType}'}

其中,多渠道包的命名規則中,可使用以下字段:

  • appName : 當前project的name
  • versionName : 當前Variant的versionName
  • versionCode : 當前Variant的versionCode
  • buildType : 當前Variant的buildType,即debug or release
  • flavorName : 當前的渠道名稱
  • appId : 當前Variant的applicationId

若是根據已有基礎包生成多渠道包,則通過rebuildChannel標籤配置:

rebuildChannel {
baseDebugApk = 已有Debug APK    
baseReleaseApk = 已有Release APK//默認爲new File(project.buildDir, "rebuildChannel/debug")debugOutputDir = Debug渠道包輸出目錄   
//默認爲new File(project.buildDir, "rebuildChannel/release")releaseOutputDir = Release渠道包輸出目錄
}

這裏要注意一下,已有APK的名字必須包含base字符串,這樣插件生成多渠道包時,會用當前的渠道替換base字符串,形成新的渠道包。

6.生成多渠道包

若沒有通過Gradle Plugin的 productFlavors配置多渠道,那麼通過以下Task channelDebugchannelRelease分別負責生成Debug和Release的多渠道包。

若是配置了productFlavors,那麼對應的Task則是channelFlavorXDebugchannelFlavorXRelease,FlavorX表示在productFlavors中配置的渠道名稱。

除此之外,如果是根據已有基礎包生成多渠道包,那麼對應的Task則是reBuildChannel

7.讀取渠道信息

通過helper類庫中的ChannelReaderUtil類讀取渠道信息。

String channel = ChannelReaderUtil.getChannel(getApplicationContext());

更多精彩內容歡迎關注騰訊 Bugly的微信公衆賬號:

騰訊 Bugly是一款專爲移動開發者打造的質量監控工具,幫助開發者快速,便捷的定位線上應用崩潰的情況以及解決方案。智能合併功能幫助開發同學把每天上報的數千條 Crash 根據根因合併分類,每日日報會列出影響用戶數最多的崩潰,精準定位功能幫助開發同學定位到出問題的代碼行,實時上報可以在發佈後快速的瞭解應用的質量情況,適配最新的 iOS, Android 官方操作系統,鵝廠的工程師都在使用,快來加入我們吧!

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章