柔性電子dip-coating: Resistive pressure sensor for high-sensitivity e-skin based on porous

sponge dip-coated CB/MWCNTs/SR conductive composites

在多空聚氨酯(PU)海綿上逐層dip-coating 炭黑CB,MWCNTs,硅橡膠納米複合材料SR

常用的柔性基底:polydimethylsiloxane(PDMS) 聚二甲硅氧烷,硅橡膠silicon rubber(SR),
聚酰亞胺polyimide (PI),熱塑性聚氨酯 thermoplastic polyurethane TPU, 纖維fabric 和聚氨酯海綿 polyurethane PU sponge。【10,11】

基於壓阻,電容和壓電pizeoresistivity, capacitance, and piezoelectricity【3】原理製造柔性傳感器。

具有3維多孔微結構的導電海棉 ,
有幾種製造方法:

  • reduced graphene oxide(rGO)【17】
  • CVD 化學氣相沉積【18,19】
  • 輔助模板集成策略template-assisted assembly strategy【20】
  • physical foaming technology【21】
  • 3Dprinting process【22】
  • dip-coating 【23】
  • EPD 電泳沉積
    CVD成長方法:在精確控制的反應氣體混合流下在Ni泡沫上生長石墨烯網絡,接下來刻蝕金屬骨架獲得石墨烯泡沫,這種方法性對來說比較複雜,不容易操作,特別對於刻蝕過程。相對來說,dip-coating技術比較簡單。

實驗

材料
  • 商用PU 密度~0.0386g/cm30.0386g/cm^3 <-- 3M company
  • MWCNTs 粉末 <-- Chengdu Organic Chemicals Co., Ltd, 平均長度爲20um,直徑爲5nm
  • Carbon black CB <-- SPC Chemical Company (Sweden)
  • Silicon rubber (SR, GD401) <–Zhonghao Chenguang Co., Ltd (Zigong, China)
  • polydimethylsiloxane (PDMS, Sylgard® 184) <-- Dow Corning
  • YC-02有機硅導電銀膠粘劑 <-- Nanjing Xilite Adhesive Co., Ltd (Nanjing)
  • 半透性薄膜 <-- Smith&Nephew Medical Limited 厚度~50um
  • 溶劑油(Solvent naphtha) <–Henan Tianfu Chemical Co., Ltd
    所有材料買後即用
傳感器製造

在這裏插入圖片描述

製作示意圖如Figure 1,

  • PU 海綿在去離子水中清洗幾次,基礎多餘的去離子水,在真空乾燥爐【DZF-6021, Shanghai Suopu Instrument Co., Ltd, Shanghai】中80攝氏度下乾燥1h,接下來,剪成 10×10mm210 \times 10 mm^2的樣本,~5mm厚
  • 準備CB/MWCNTs 懸浮溶液,CB和MWCNTs粉末按照質量比2:3混合,分散到溶劑油(solvent naphtha)[比如0.3g, 50ml],接下來分別超聲處理1h,磁攪拌1h。
  • 接下來將室溫硫化(RTV)的硅橡膠(例如0.2g)放入CB/MWCNTs的懸浮液中,並用磁棒攪拌1h,獲得CB/MWCNTs/SR混合物溶液
  • 將PU樣本放入溶液中,擠壓幾次確保溶液完全被海綿吸收,從溶液中取出,在正空乾燥爐中,100攝氏度下乾燥2h
  • 此過程可以操作幾次來獲得均勻堅固的覆蓋效果。獲得PU導電海綿
  • 將YC-02有機硅導電銀膠粘劑作爲柔性電極粘貼在導電海綿的上下表面
  • 按照pre-polymer 和curing agent (固化劑) 10:1的比列混合PDMS, 磁攪拌10min,脫氣(degassed) 30min。PDMS薄膜~50um,覆蓋在電極上作爲覆蓋層。

最終的效果圖:
在這裏插入圖片描述

表徵:

The microstructures of the pristine polyurethane sponge and polyurethane sponge coated with CB/MWCNTs/
SR composite were characterized by field emission scanning electron microscopy (SU8020, Hitachi). X-ray
diffraction (XRD) patterns (using aD/MAX2500 V, Rigaku) were collected to characterize the degree of
nanocomposites. The current-voltage (I-V ) curves of the piezoresistive strain sensor under different pressure
were obtained by using Keithley 4200. Mechanical compressional tests were performed with a universal testing
machine (LS-WD-100, Shenzhen Lisen electrical technology Co., Ltd). The relative resistance under different
pressure were obtained by aDCresistance meter (TH2515, Changzhou Tonghui electronics Co., Ltd). Dynamic
response time of the device was performed by USB6211DAQ(NI) and viewed via LabVIEW system.

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章