Spark 性能調優

最近在學習spark,spark相對於mr來說他的dag模型和內存管理確實很大的提高了性能,但是Spark開發出高性能的大數據計算作業,並不是那麼簡單的。想要spark最大的發揮他的優勢,需要在很多方面進行調優。

基礎篇

1. 開發調優
開發調優主要就是對於算法的理解以及使用,也是最基礎的部分。
1.儘可能複用同一個RDD,這樣可以儘可能地減少RDD的數量,從而儘可能減少算子執行的次數
2.對多次使用的RDD進行持久化
使用cache()persist(StorageLevel.MEMORY_AND_DISK_SER),來持久化rdd到內存中,這樣就不需要再從源頭重新算一次,不用再存hdfs拉去數據避免磁盤 網絡的io,序列化rdd,此時RDD中的每個partition都會序列化成一個大的字節數組,然後再持久化到內存或磁盤中,序列化的方式可以減少持久化的數據對內存/磁盤的佔用量,進而避免內存被持久化數據佔用過多,從而發生頻繁GC。
在這裏插入圖片描述
3.儘可能避免shuffle類的算子
在spark的作業運行中,最消耗性能的就是shuffle的過程,shuffle其實就是把多個節點上的相同的key拉取到一個節點上,進行聚合或者join操作,shuffle過程中,各個節點上相同的key先是寫入本地的磁盤文件中,然後其他節點通過網絡傳輸拉取各個節點上磁盤文件中相同的key。而且相同的key。拉取到同一個節點內存buffer(32k)中,內存不夠用,會進行溢寫操作,應爲shuffle過程中會有大量的磁盤io和網絡io,這也是shuffle消耗性能的原因。
4.使用broastcast廣播變量,廣播大變量
val rdd2Data = rdd2.collect()
val rdd2DataBroadcast = sc.broadcast(rdd2Data)
數據廣播到每隔節點的excuter而不是task, 對於數據量小的rdd 需要做聚合 join操作的時,可以通過廣播變量,廣播變量可以使變量產生的副本大大減小,從而減少網絡傳輸的性能開銷,並減少對Executor內存的佔用開銷,降低GC的頻率。

BlockManager中,嘗試獲取變量副本;如果本地沒有,BlockManager,也許會從遠程的Driver上面去獲取變量副本;也有可能從距離比較近的其他節點的Executor的BlockManager上去獲取,並保存在本地的BlockManager中; BlockManager負責管理某個Executor對應的內存和磁盤上的數據,此後這個executor上的task,都會直接使用本地的BlockManager中的副本。
5.使用map-side預聚合的shuffle操作
如果一定要使用shuffle操作,則儘量使用map-side預聚合的算子
所謂的map-side預聚合,就是在每個節點的本地對相同的key做一次聚合操作,類似於mr中的combiner,聚合之後,大大見笑了拉取數據的數量,減小磁盤網絡io的消耗,儘量使用reduceByKey或者aggregateByKey算子來替代掉groupByKey算子,因爲reduceByKey和aggregateByKey算子都會使用用戶自定義的函數對每個節點本地的相同key進行預聚合。而groupByKey算子是不會進行預聚合的。
6.使用高性能的算子
使用reduceByKey/aggregateByKey替代groupByKey

使用mapPartitions替代普通map
mapPartitions類的算子,一次函數調用會處理一個partition所有的數據,而不是一次函數調用處理一條,性能相對來說會高一些。但是有的時候,使用mapPartitions會出現OOM(內存溢出)的問題。因爲單次函數調用就要處理掉一個partition所有的數據,如果內存不夠,垃圾回收時是無法回收掉太多對象的,很可能出現OOM異常。所以使用這類操作時要慎重!
使用foreachPartitions替代foreach
原理類似於“使用mapPartitions替代map”,也是一次函數調用處理一個partition的所有數據,而不是一次函數調用處理一條數據。在實踐中發現,foreachPartitions類的算子,對性能的提升還是很有幫助的。比如在foreach函數中,將RDD中所有數據寫MySQL,那麼如果是普通的foreach算子,就會一條數據一條數據地寫,每次函數調用可能就會創建一個數據庫連接,此時就勢必會頻繁地創建和銷燬數據庫連接,性能是非常低下;但是如果用foreachPartitions算子一次性處理一個partition的數據,那麼對於每個partition,只要創建一個數據庫連接即可,然後執行批量插入操作,此時性能是比較高的。實踐中發現,對於1萬條左右的數據量寫MySQL,性能可以提升30%以上。
使用filter之後進行coalesce操作
通常對一個RDD執行filter算子過濾掉RDD中較多數據後(比如30%以上的數據),建議使用coalesce算子,手動減少RDD的partition數量,將RDD中的數據壓縮到更少的partition中去。因爲filter之後,RDD的每個partition中都會有很多數據被過濾掉,此時如果照常進行後續的計算,其實每個task處理的partition中的數據量並不是很多,有一點資源浪費,而且此時處理的task越多,可能速度反而越慢。因此用coalesce減少partition數量,將RDD中的數據壓縮到更少的partition之後,只要使用更少的task即可處理完所有的partition。在某些場景下,對於性能的提升會有一定的幫助。
使用repartitionAndSortWithinPartitions替代repartition與sort類操作
repartitionAndSortWithinPartitions是Spark官網推薦的一個算子,官方建議,如果需要在repartition重分區之後,還要進行排序,建議直接使用repartitionAndSortWithinPartitions算子。因爲該算子可以一邊進行重分區的shuffle操作,一邊進行排序。shuffle與sort兩個操作同時進行,比先shuffle再sort來說,性能可能是要高的。
7.使用Kyro優化序列化性能
在spark中,主要有三個地方涉及到了序列化

  • 在算子函數中使用到外部變量時,該變量會被序列化後進行網絡傳輸
  • 將自定義的類型作爲RDD的泛型類型時(比如JavaRDD,Student是自定義類型),所有自定義類型對象,都會進行序列化。因此這種情況下,也要求自定義的類必須實現Serializable接口
  • 使用可序列化的持久化策略時(比如MEMORY_ONLY_SER),Spark會將RDD中的每個partition都序列化成一個大的字節數組

對於這三種出現序列化的地方,我們都可以通過使用Kryo序列化類庫,來優化序列化和反序列化的性能。Spark默認使用的是Java的序列化機制,也就是ObjectOutputStream/ObjectInputStream API來進行序列化和反序列化。但是Spark同時支持使用Kryo序列化庫,Kryo序列化類庫的性能比Java序列化類庫的性能要高很多,Spark之所以默認沒有使用Kryo作爲序列化類庫,是因爲Kryo要求最好要註冊所有需要進行序列化的自定義類型,因此對於開發者來說,這種方式比較麻煩
在這裏插入圖片描述
資源調優
在這裏插入圖片描述
我們使用spark-submit提交一個Spark作業之後,這個作業就會啓動一個對應的Driver進程,Driver進程本身會根據我們設置的參數,佔有一定數量的內存和CPU core。而Driver進程要做的第一件事情,就是向集羣管理器(yarn)申請運行Spark作業需要使用的資源,這裏的資源指的就是Executor進程。YARN集羣管理器會根據我們爲Spark作業設置的資源參數,在各個工作節點上,啓動一定數量的Executor進程,每個Executor進程都佔有一定數量的內存和CPU core
在申請到了作業執行所需的資源之後,Driver進程就會開始調度和執行我們編寫的作業代碼了。Driver進程會將我們編寫的Spark作業代碼分拆爲多個stage,每個stage執行一部分代碼片段,併爲每個stage創建一批task,然後將這些task分配到各個Executor進程中執行。task是最小的計算單元,負責執行一模一樣的計算邏輯(也就是我們自己編寫的某個代碼片段),只是每個task處理的數據不同而已。一個stage的所有task都執行完畢之後,會在各個節點本地的磁盤文件中寫入計算中間結果,然後Driver就會調度運行下一個stage。下一個stage的task的輸入數據就是上一個stage輸出的中間結果。如此循環往復,直到將我們自己編寫的代碼邏輯全部執行完,並且計算完所有的數據,得到我們想要的結果爲止。
Spark是根據shuffle類算子來進行stage的劃分。因此一個stage剛開始執行的時候,它的每個task可能都會從上一個stage的task所在的節點,去通過網絡傳輸拉取需要自己處理的所有key,然後對拉取到的所有相同的key使用我們自己編寫的算子函數執行聚合操作(比如reduceByKey()算子接收的函數)。這個過程就是shuffle。
因此Executor的內存主要分爲三塊:第一塊是讓task執行我們自己編寫的代碼時使用,默認是佔Executor總內存的20%;第二塊是讓task通過shuffle過程拉取了上一個stage的task的輸出後,進行聚合等操作時使用,默認也是佔Executor總內存的20%;第三塊是讓RDD持久化時使用,默認佔Executor總內存的60%。
task的執行速度是跟每個Executor進程的CPU core數量有直接關係的。一個CPU core同一時間只能執行一個線程。而每個Executor進程上分配到的多個task,都是以每個task一條線程的方式,多線程併發運行的。如果CPU core數量比較充足,而且分配到的task數量比較合理,那麼通常來說,可以比較快速和高效地執行完這些task線程。
資源參數調優
通過調節各種參數,來優化資源使用的效率,從而提升Spark作業的執行性能

  • num-executors
    參數說明:該參數用於設置Spark作業總共要用多少個Executor進程來執行。Driver在向YARN集羣管理器申請資源時,YARN集羣管理器會儘可能按照你的設置來在集羣的各個工作節點上,啓動相應數量的Executor進程。這個參數非常之重要,如果不設置的話,默認只會給你啓動少量的Executor進程,此時你的Spark作業的運行速度是非常慢的。
    參數調優建議:每個Spark作業的運行一般設置50~100個左右的Executor進程比較合適,設置太少或太多的Executor進程都不好。設置的太少,無法充分利用集羣資源;設置的太多的話,大部分隊列可能無法給予充分的資源。

- [ ] executor-memory
參數說明:該參數用於設置每個Executor進程的內存。Executor內存的大小,很多時候直接決定了Spark作業的性能,而且跟常見的JVM OOM異常,也有直接的關聯。
參數調優建議:每個Executor進程的內存設置4G-8G較爲合適。可以看看自己團隊的資源隊列的最大內存限制是多少,num-executors乘以executor-memory,就代表了你的Spark作業申請到的總內存量(也就是所有Executor進程的內存總和),這個量是不能超過隊列的最大內存量的。此外,如果你是跟團隊裏其他人共享這個資源隊列,那麼申請的總內存量最好不要超過資源隊列最大總內存的1/3~1/2,避免你自己的Spark作業佔用了隊列所有的資源,導致別的同學的作業無法運行。

- [ ] executor-cores
參數說明:該參數用於設置每個Executor進程的CPU core數量。這個參數決定了每個Executor進程並行執行task線程的能力。因爲每個CPU core同一時間只能執行一個task線程,因此每個Executor進程的CPU core數量越多,越能夠快速地執行完分配給自己的所有task線程。
參數調優建議:Executor的CPU core數量設置爲2-4個較爲合適。同樣得根據不同部門的資源隊列來定,可以看看自己的資源隊列的最大CPU core限制是多少,再依據設置的Executor數量,來決定每個Executor進程可以分配到幾個CPU core。同樣建議,如果是跟他人共享這個隊列,那麼num-executors * executor-cores不要超過隊列總CPU core的1/3~1/2左右比較合適,也是避免影響其他同學的作業運行。

- [ ] driver-memory
參數說明:該參數用於設置Driver進程的內存。
參數調優建議:Driver的內存通常來說不設置,或者設置1G左右應該就夠了。唯一需要注意的一點是,如果需要使用collect算子將RDD的數據全部拉取到Driver上進行處理,那麼必須確保Driver的內存足夠大,否則會出現OOM內存溢出的問題。

- [ ] spark.default.parallelism
參數說明:該參數用於設置每個stage的默認task數量。這個參數極爲重要,如果不設置可能會直接影響你的Spark作業性能。
參數調優建議:如果Spark作業中,有較多的RDD持久化操作,該參數的值可以適當提高一些,保證持久化的數據能夠容納在內存中。避免內存不夠緩存所有的數據,導致數據只能寫入磁盤中,降低了性能。但是如果Spark作業中的shuffle類操作比較多,而持久化操作比較少,那麼這個參數的值適當降低一些比較合適。此外,如果發現作業由於頻繁的gc導致運行緩慢(通過spark web ui可以觀察到作業的gc耗時),意味着task執行用戶代碼的內存不夠用,那麼同樣建議調低這個參數的值。

- [ ] spark.shuffle.memoryFraction
參數說明:該參數用於設置shuffle過程中一個task拉取到上個stage的task的輸出後,進行聚合操作時能夠使用的Executor內存的比例,默認是0.2。也就是說,Executor默認只有20%的內存用來進行該操作。shuffle操作在進行聚合時,如果發現使用的內存超出了這個20%的限制,那麼多餘的數據就會溢寫到磁盤文件中去,此時就會極大地降低性能。
參數調優建議:如果Spark作業中的RDD持久化操作較少,shuffle操作較多時,建議降低持久化操作的內存佔比,提高shuffle操作的內存佔比比例,避免shuffle過程中數據過多時內存不夠用,必須溢寫到磁盤上,降低了性能。此外,如果發現作業由於頻繁的gc導致運行緩慢,意味着task執行用戶代碼的內存不夠用,那麼同樣建議調低這個參數的值。

- [ ] 參數參考

在這裏插入圖片描述

高級篇

數據傾斜調優
有的時候,我們可能會遇到大數據計算中一個最棘手的問題——數據傾斜,此時Spark作業的性能會比期望差很多。數據傾斜調優,就是使用各種技術方案解決不同類型的數據傾斜問題,以保證Spark作業的性能。
數據傾斜發生時的現象

  • 絕大多數task執行得都非常快,但個別task執行極慢。比如,總共有1000個task,997個task都在1分鐘之內執行完了,但是剩餘兩三個task卻要一兩個小時。這種情況很常見。
  • 原本能夠正常執行的Spark作業,某天突然報出OOM(內存溢出)異常,觀察異常棧,是我們寫的業務代碼造成的。這種情況比較少見。
    數據傾斜發生的原理
    數據傾斜的原理很簡單:在進行shuffle的時候,必須將各個節點上相同的key拉取到某個節點上的一個task來進行處理,比如按照key進行聚合或join等操作。此時如果某個key對應的數據量特別大的話,就會發生數據傾斜。比如大部分key對應10條數據,但是個別key卻對應了100萬條數據,那麼大部分task可能就只會分配到10條數據,然後1秒鐘就運行完了;但是個別task可能分配到了100萬數據,要運行一兩個小時。因此,整個Spark作業的運行進度是由運行時間最長的那個task決定的。因此出現數據傾斜的時候,Spark作業看起來會運行得非常緩慢,甚至可能因爲某個task處理的數據量過大導致內存溢出。
    如何定位導致數據傾斜的代碼
    數據傾斜只會發生在shuffle過程中。這裏給大家羅列一些常用的並且可能會觸發shuffle操作的算子:distinct、groupByKey、reduceByKey、aggregateByKey、join、cogroup、repartition等。出現數據傾斜時,可能就是你的代碼中使用了這些算子中的某一個所導致的。
    某個task執行特別慢的情況
    如果是用yarn-client模式提交,那麼本地是直接可以看到log的,可以在log中找到當前運行到了第幾個stage;如果是用yarn-cluster模式提交,則可以通過Spark Web UI來查看當前運行到了第幾個stage。此外,無論是使用yarn-client模式還是yarn-cluster模式,我們都可以在Spark Web UI上深入看一下當前這個stage各個task分配的數據量,從而進一步確定是不是task分配的數據不均勻導致了數據傾斜。
    比如下圖中,倒數第三列顯示了每個task的運行時間。明顯可以看到,有的task運行特別快,只需要幾秒鐘就可以運行完;而有的task運行特別慢,需要幾分鐘才能運行完,此時單從運行時間上看就已經能夠確定發生數據傾斜了。此外,倒數第一列顯示了每個task處理的數據量,明顯可以看到,運行時間特別短的task只需要處理幾百KB的數據即可,而運行時間特別長的task需要處理幾千KB的數據,處理的數據量差了10倍。此時更加能夠確定是發生了數據傾斜。
    在這裏插入圖片描述
    知道數據傾斜發生在哪一個stage之後,接着我們就需要根據stage劃分原理,推算出來發生傾斜的那個stage對應代碼中的哪一部分,這部分代碼中肯定會有一個shuffle類算子。
    某個task莫名其妙內存溢出的情況
    通常需要分析一下那個執行了shuffle操作並且導致了數據傾斜的RDD/Hive表,查看一下其中key的分佈情況。這主要是爲之後選擇哪一種技術方案提供依據。針對不同的key分佈與不同的shuffle算子組合起來的各種情況,可能需要選擇不同的技術方案來解決。
    時根據你執行操作的情況不同,可以有很多種查看key分佈的方式:
    1.如果是Spark SQL中的group by、join語句導致的數據傾斜,那麼就查詢一下SQL中使用的表的key分佈情況。
    如果是對Spark RDD執行shuffle算子導致的數據傾斜,那麼可以在Spark作業中加入查看key分佈的代碼,比如RDD.countByKey()。然後對統計出來的各個key出現的次數,collect/take到客戶端打印一下,就可以看到key的分佈情況。

數據傾斜的解決方案

解決方案一:使用Hive ETL預處理數據
方案適用場景:導致數據傾斜的是Hive表。如果該Hive表中的數據本身很不均勻(比如某個key對應了100萬數據,其他key纔對應了10條數據),而且業務場景需要頻繁使用Spark對Hive表執行某個分析操作,那麼比較適合使用這種技術方案。
方案實現思路:此時可以評估一下,是否可以通過Hive來進行數據預處理(即通過Hive ETL預先對數據按照key進行聚合,或者是預先和其他表進行join),然後在Spark作業中針對的數據源就不是原來的Hive表了,而是預處理後的Hive表。此時由於數據已經預先進行過聚合或join操作了,那麼在Spark作業中也就不需要使用原先的shuffle類算子執行這類操作了。
方案實現原理:這種方案從根源上解決了數據傾斜,因爲徹底避免了在Spark中執行shuffle類算子,那麼肯定就不會有數據傾斜的問題了。但是這裏也要提醒一下大家,這種方式屬於治標不治本。因爲畢竟數據本身就存在分佈不均勻的問題,所以Hive ETL中進行group by或者join等shuffle操作時,還是會出現數據傾斜,導致Hive ETL的速度很慢。我們只是把數據傾斜的發生提前到了Hive ETL中,避免Spark程序發生數據傾斜而已。
方案優點:實現起來簡單便捷,效果還非常好,完全規避掉了數據傾斜,Spark作業的性能會大幅度提升。
方案缺點:治標不治本,Hive ETL中還是會發生數據傾斜。
方案實踐經驗:在一些Java系統與Spark結合使用的項目中,會出現Java代碼頻繁調用Spark作業的場景,而且對Spark作業的執行性能要求很高,就比較適合使用這種方案。將數據傾斜提前到上游的Hive ETL,每天僅執行一次,只有那一次是比較慢的,而之後每次Java調用Spark作業時,執行速度都會很快,能夠提供更好的用戶體驗。
項目實踐經驗:在美團·點評的交互式用戶行爲分析系統中使用了這種方案,該系統主要是允許用戶通過Java Web系統提交數據分析統計任務,後端通過Java提交Spark作業進行數據分析統計。要求Spark作業速度必須要快,儘量在10分鐘以內,否則速度太慢,用戶體驗會很差。所以我們將有些Spark作業的shuffle操作提前到了Hive ETL中,從而讓Spark直接使用預處理的Hive中間表,儘可能地減少Spark的shuffle操作,大幅度提升了性能,將部分作業的性能提升了6倍以上。
解決方案二:過濾少數導致傾斜的key
方案適用場景:如果發現導致傾斜的key就少數幾個,而且對計算本身的影響並不大的話,那麼很適合使用這種方案。比如99%的key就對應10條數據,但是隻有一個key對應了100萬數據,從而導致了數據傾斜。

方案實現思路:如果我們判斷那少數幾個數據量特別多的key,對作業的執行和計算結果不是特別重要的話,那麼幹脆就直接過濾掉那少數幾個key。比如,在Spark SQL中可以使用where子句過濾掉這些key或者在Spark Core中對RDD執行filter算子過濾掉這些key。如果需要每次作業執行時,動態判定哪些key的數據量最多然後再進行過濾,那麼可以使用sample算子對RDD進行採樣,然後計算出每個key的數量,取數據量最多的key過濾掉即可。

方案實現原理:將導致數據傾斜的key給過濾掉之後,這些key就不會參與計算了,自然不可能產生數據傾斜。

方案優點:實現簡單,而且效果也很好,可以完全規避掉數據傾斜。

方案缺點:適用場景不多,大多數情況下,導致傾斜的key還是很多的,並不是只有少數幾個。

方案實踐經驗:在項目中我們也採用過這種方案解決數據傾斜。有一次發現某一天Spark作業在運行的時候突然OOM了,追查之後發現,是Hive表中的某一個key在那天數據異常,導致數據量暴增。因此就採取每次執行前先進行採樣,計算出樣本中數據量最大的幾個key之後,直接在程序中將那些key給過濾掉。
解決方案三:提高shuffle操作的並行度
方案適用場景:如果我們必須要對數據傾斜迎難而上,那麼建議優先使用這種方案,因爲這是處理數據傾斜最簡單的一種方案。

方案實現思路:在對RDD執行shuffle算子時,給shuffle算子傳入一個參數,比如reduceByKey(1000),該參數就設置了這個shuffle算子執行時shuffle read task的數量。對於Spark SQL中的shuffle類語句,比如group by、join等,需要設置一個參數,即spark.sql.shuffle.partitions,該參數代表了shuffle read task的並行度,該值默認是200,對於很多場景來說都有點過小。

方案實現原理:增加shuffle read task的數量,可以讓原本分配給一個task的多個key分配給多個task,從而讓每個task處理比原來更少的數據。舉例來說,如果原本有5個key,每個key對應10條數據,這5個key都是分配給一個task的,那麼這個task就要處理50條數據。而增加了shuffle read task以後,每個task就分配到一個key,即每個task就處理10條數據,那麼自然每個task的執行時間都會變短了。具體原理如下圖所示。

方案優點:實現起來比較簡單,可以有效緩解和減輕數據傾斜的影響。

方案缺點:只是緩解了數據傾斜而已,沒有徹底根除問題,根據實踐經驗來看,其效果有限。

方案實踐經驗:該方案通常無法徹底解決數據傾斜,因爲如果出現一些極端情況,比如某個key對應的數據量有100萬,那麼無論你的task數量增加到多少,這個對應着100萬數據的key肯定還是會分配到一個task中去處理,因此註定還是會發生數據傾斜的。所以這種方案只能說是在發現數據傾斜時嘗試使用的第一種手段,嘗試去用嘴簡單的方法緩解數據傾斜而已,或者是和其他方案結合起來使用。
在這裏插入圖片描述
解決方案四:兩階段聚合(局部聚合+全局聚合)
方案適用場景:對RDD執行reduceByKey等聚合類shuffle算子或者在Spark SQL中使用group by語句進行分組聚合時,比較適用這種方案。

方案實現思路:這個方案的核心實現思路就是進行兩階段聚合。第一次是局部聚合,先給每個key都打上一個隨機數,比如10以內的隨機數,此時原先一樣的key就變成不一樣的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就會變成(1_hello, 1) (1_hello, 1) (2_hello, 1) (2_hello, 1)。接着對打上隨機數後的數據,執行reduceByKey等聚合操作,進行局部聚合,那麼局部聚合結果,就會變成了(1_hello, 2) (2_hello, 2)。然後將各個key的前綴給去掉,就會變成(hello,2)(hello,2),再次進行全局聚合操作,就可以得到最終結果了,比如(hello, 4)。

方案實現原理:將原本相同的key通過附加隨機前綴的方式,變成多個不同的key,就可以讓原本被一個task處理的數據分散到多個task上去做局部聚合,進而解決單個task處理數據量過多的問題。接着去除掉隨機前綴,再次進行全局聚合,就可以得到最終的結果。具體原理見下圖。

方案優點:對於聚合類的shuffle操作導致的數據傾斜,效果是非常不錯的。通常都可以解決掉數據傾斜,或者至少是大幅度緩解數據傾斜,將Spark作業的性能提升數倍以上。

方案缺點:僅僅適用於聚合類的shuffle操作,適用範圍相對較窄。如果是join類的shuffle操作,還得用其他的解決方案。
在這裏插入圖片描述
解決方案五:將reduce join轉爲map join
方案適用場景:在對RDD使用join類操作,或者是在Spark SQL中使用join語句時,而且join操作中的一個RDD或表的數據量比較小(比如幾百M或者一兩G),比較適用此方案。

方案實現思路:不使用join算子進行連接操作,而使用Broadcast變量與map類算子實現join操作,進而完全規避掉shuffle類的操作,徹底避免數據傾斜的發生和出現。將較小RDD中的數據直接通過collect算子拉取到Driver端的內存中來,然後對其創建一個Broadcast變量;接着對另外一個RDD執行map類算子,在算子函數內,從Broadcast變量中獲取較小RDD的全量數據,與當前RDD的每一條數據按照連接key進行比對,如果連接key相同的話,那麼就將兩個RDD的數據用你需要的方式連接起來。

方案實現原理:普通的join是會走shuffle過程的,而一旦shuffle,就相當於會將相同key的數據拉取到一個shuffle read task中再進行join,此時就是reduce join。但是如果一個RDD是比較小的,則可以採用廣播小RDD全量數據+map算子來實現與join同樣的效果,也就是map join,此時就不會發生shuffle操作,也就不會發生數據傾斜。具體原理如下圖所示。

方案優點:對join操作導致的數據傾斜,效果非常好,因爲根本就不會發生shuffle,也就根本不會發生數據傾斜。

方案缺點:適用場景較少,因爲這個方案只適用於一個大表和一個小表的情況。畢竟我們需要將小表進行廣播,此時會比較消耗內存資源,driver和每個Executor內存中都會駐留一份小RDD的全量數據。如果我們廣播出去的RDD數據比較大,比如10G以上,那麼就可能發生內存溢出了。因此並不適合兩個都是大表的情況。
在這裏插入圖片描述
解決方案六:採樣傾斜key並分拆join操作
方案適用場景:兩個RDD/Hive表進行join的時候,如果數據量都比較大,無法採用“解決方案五”,那麼此時可以看一下兩個RDD/Hive表中的key分佈情況。如果出現數據傾斜,是因爲其中某一個RDD/Hive表中的少數幾個key的數據量過大,而另一個RDD/Hive表中的所有key都分佈比較均勻,那麼採用這個解決方案是比較合適的。

方案實現思路:

  • 對包含少數幾個數據量過大的key的那個RDD,通過sample算子採樣出一份樣本來,然後統計一下每個key的數量,計算出來數據量最大的是哪幾個key。
  • 然後將這幾個key對應的數據從原來的RDD中拆分出來,形成一個單獨的RDD,並給每個key都打上n以內的隨機數作爲前綴,而不會導致傾斜的大部分key形成另外一個RDD。
  • 接着將需要join的另一個RDD,也過濾出來那幾個傾斜key對應的數據並形成一個單獨的RDD,將每條數據膨脹成n條數據,這n條數據都按順序附加一個0~n的前綴,不會導致傾斜的大部分key也形成另外一個RDD。
  • 再將附加了隨機前綴的獨立RDD與另一個膨脹n倍的獨立RDD進行join,此時就可以將原先相同的key打散成n份,分散到多個task中去進行join了。
  • 而另外兩個普通的RDD就照常join即可。
  • 最後將兩次join的結果使用union算子合併起來即可,就是最終的join結果。
    方案實現原理:對於join導致的數據傾斜,如果只是某幾個key導致了傾斜,可以將少數幾個key分拆成獨立RDD,並附加隨機前綴打散成n份去進行join,此時這幾個key對應的數據就不會集中在少數幾個task上,而是分散到多個task進行join了。具體原理見下圖。

方案優點:對於join導致的數據傾斜,如果只是某幾個key導致了傾斜,採用該方式可以用最有效的方式打散key進行join。而且只需要針對少數傾斜key對應的數據進行擴容n倍,不需要對全量數據進行擴容。避免了佔用過多內存。

方案缺點:如果導致傾斜的key特別多的話,比如成千上萬個key都導致數據傾斜,那麼這種方式也不適合。
在這裏插入圖片描述
解決方案七:使用隨機前綴和擴容RDD進行join
方案適用場景:如果在進行join操作時,RDD中有大量的key導致數據傾斜,那麼進行分拆key也沒什麼意義,此時就只能使用最後一種方案來解決問題了。
方案實現思路:

  • 該方案的實現思路基本和“解決方案六”類似,首先查看RDD/Hive表中的數據分佈情況,找到那個造成數據傾斜的RDD/Hive表,比如有多個key都對應了超過1萬條數據。
  • 然後將該RDD的每條數據都打上一個n以內的隨機前綴。
  • 同時對另外一個正常的RDD進行擴容,將每條數據都擴容成n條數據,擴容出來的每條數據都依次打上一個0~n的前綴。
  • 最後將兩個處理後的RDD進行join即可。
    方案實現原理:將原先一樣的key通過附加隨機前綴變成不一樣的key,然後就可以將這些處理後的“不同key”分散到多個task中去處理,而不是讓一個task處理大量的相同key。該方案與“解決方案六”的不同之處就在於,上一種方案是儘量只對少數傾斜key對應的數據進行特殊處理,由於處理過程需要擴容RDD,因此上一種方案擴容RDD後對內存的佔用並不大;而這一種方案是針對有大量傾斜key的情況,沒法將部分key拆分出來進行單獨處理,因此只能對整個RDD進行數據擴容,對內存資源要求很高。

方案優點:對join類型的數據傾斜基本都可以處理,而且效果也相對比較顯著,性能提升效果非常不錯。

方案缺點:該方案更多的是緩解數據傾斜,而不是徹底避免數據傾斜。而且需要對整個RDD進行擴容,對內存資源要求很高。

方案實踐經驗:曾經開發一個數據需求的時候,發現一個join導致了數據傾斜。優化之前,作業的執行時間大約是60分鐘左右;使用該方案優化之後,執行時間縮短到10分鐘左右,性能提升了6倍。
在這裏插入圖片描述
解決方案八:多種方案組合使用
在實踐中發現,很多情況下,如果只是處理較爲簡單的數據傾斜場景,那麼使用上述方案中的某一種基本就可以解決。但是如果要處理一個較爲複雜的數據傾斜場景,那麼可能需要將多種方案組合起來使用。比如說,我們針對出現了多個數據傾斜環節的Spark作業,可以先運用解決方案一和二,預處理一部分數據,並過濾一部分數據來緩解;其次可以對某些shuffle操作提升並行度,優化其性能;最後還可以針對不同的聚合或join操作,選擇一種方案來優化其性能。大家需要對這些方案的思路和原理都透徹理解之後,在實踐中根據各種不同的情況,靈活運用多種方案,來解決自己的數據傾斜問題
shuffle調優
大多數Spark作業的性能主要就是消耗在了shuffle環節,因爲該環節包含了大量的磁盤IO、序列化、網絡數據傳輸等操作。因此,如果要讓作業的性能更上一層樓,就有必要對shuffle過程進行調優。但是也必須提醒大家的是,影響一個Spark作業性能的因素,主要還是代碼開發、資源參數以及數據傾斜,shuffle調優只能在整個Spark的性能調優中佔到一小部分而已。因此大家務必把握住調優的基本原則,千萬不要捨本逐末。下面我們就給大家詳細講解shuffle的原理,以及相關參數的說明,同時給出各個參數的調優建議
shuffle相關參數調優

spark.shuffle.file.buffer
默認值:32k
參數說明:該參數用於設置shuffle write task的BufferedOutputStream的buffer緩衝大小。將數據寫到磁盤文件之前,會先寫入buffer緩衝中,待緩衝寫滿之後,纔會溢寫到磁盤。
調優建議:如果作業可用的內存資源較爲充足的話,可以適當增加這個參數的大小(比如64k),從而減少shuffle write過程中溢寫磁盤文件的次數,也就可以減少磁盤IO次數,進而提升性能。在實踐中發現,合理調節該參數,性能會有1%~5%的提升。
spark.reducer.maxSizeInFlight
默認值:48m
參數說明:該參數用於設置shuffle read task的buffer緩衝大小,而這個buffer緩衝決定了每次能夠拉取多少數據。
調優建議:如果作業可用的內存資源較爲充足的話,可以適當增加這個參數的大小(比如96m),從而減少拉取數據的次數,也就可以減少網絡傳輸的次數,進而提升性能。在實踐中發現,合理調節該參數,性能會有1%~5%的提升。
spark.shuffle.io.maxRetries
默認值:3
參數說明:shuffle read task從shuffle write task所在節點拉取屬於自己的數據時,如果因爲網絡異常導致拉取失敗,是會自動進行重試的。該參數就代表了可以重試的最大次數。如果在指定次數之內拉取還是沒有成功,就可能會導致作業執行失敗。
調優建議:對於那些包含了特別耗時的shuffle操作的作業,建議增加重試最大次數(比如60次),以避免由於JVM的full gc或者網絡不穩定等因素導致的數據拉取失敗。在實踐中發現,對於針對超大數據量(數十億~上百億)的shuffle過程,調節該參數可以大幅度提升穩定性。
spark.shuffle.io.retryWait
默認值:5s
參數說明:具體解釋同上,該參數代表了每次重試拉取數據的等待間隔,默認是5s。
調優建議:建議加大間隔時長(比如60s),以增加shuffle操作的穩定性。
spark.shuffle.memoryFraction
默認值:0.2
參數說明:該參數代表了Executor內存中,分配給shuffle read task進行聚合操作的內存比例,默認是20%。
調優建議:在資源參數調優中講解過這個參數。如果內存充足,而且很少使用持久化操作,建議調高這個比例,給shuffle read的聚合操作更多內存,以避免由於內存不足導致聚合過程中頻繁讀寫磁盤。在實踐中發現,合理調節該參數可以將性能提升10%左右。
spark.shuffle.manager
默認值:sort
參數說明:該參數用於設置ShuffleManager的類型。Spark 1.5以後,有三個可選項:hash、sort和tungsten-sort。HashShuffleManager是Spark 1.2以前的默認選項,但是Spark 1.2以及之後的版本默認都是SortShuffleManager了。tungsten-sort與sort類似,但是使用了tungsten計劃中的堆外內存管理機制,內存使用效率更高。
調優建議:由於SortShuffleManager默認會對數據進行排序,因此如果你的業務邏輯中需要該排序機制的話,則使用默認的SortShuffleManager就可以;而如果你的業務邏輯不需要對數據進行排序,那麼建議參考後面的幾個參數調優,通過bypass機制或優化的HashShuffleManager來避免排序操作,同時提供較好的磁盤讀寫性能。這裏要注意的是,tungsten-sort要慎用,因爲之前發現了一些相應的bug。
spark.shuffle.sort.bypassMergeThreshold
默認值:200
參數說明:當ShuffleManager爲SortShuffleManager時,如果shuffle read task的數量小於這個閾值(默認是200),則shuffle write過程中不會進行排序操作,而是直接按照未經優化的HashShuffleManager的方式去寫數據,但是最後會將每個task產生的所有臨時磁盤文件都合併成一個文件,並會創建單獨的索引文件。
調優建議:當你使用SortShuffleManager時,如果的確不需要排序操作,那麼建議將這個參數調大一些,大於shuffle read task的數量。那麼此時就會自動啓用bypass機制,map-side就不會進行排序了,減少了排序的性能開銷。但是這種方式下,依然會產生大量的磁盤文件,因此shuffle write性能有待提高。
spark.shuffle.consolidateFiles
默認值:false
參數說明:如果使用HashShuffleManager,該參數有效。如果設置爲true,那麼就會開啓consolidate機制,會大幅度合併shuffle write的輸出文件,對於shuffle read task數量特別多的情況下,這種方法可以極大地減少磁盤IO開銷,提升性能。
調優建議:如果的確不需要SortShuffleManager的排序機制,那麼除了使用bypass機制,還可以嘗試將spark.shffle.manager參數手動指定爲hash,使用HashShuffleManager,同時開啓consolidate機制。在實踐中嘗試過,發現其性能比開啓了bypass機制的SortShuffleManager要高出10%~30%。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章