Linux非對稱路由

首先解釋一下什麼是對稱路由和不對稱路由。

     對稱路由:symmetric route,指從A到B所走的路由和從B到A所走的路由是相同的

     不對稱路由:asymmetric route,指從A到B所走的路由和從B到A所走的路由是不同的

測試過程如下

說明:

     1 以下這三種情況中,iptables和selinux都已關閉

     2 所有測試均基於RHEL6.8

*********************************

【情況1】這是測試中遇到的問題。這個問題不是非對稱路由問題,而是普通的路由問題

*********************************

    我這裏只是單純的ping不通。在主機B上執行ping -I 172.16.1.254 10.0.208.181(ping的-I是指定源地址),在主機B上進行ping的時候,指定了原IP爲eth1接口的地址,目的地址是主機A的eth0 IP

主機A和主機B的默認網關都指向了10.0.208.254

spacer.gifwKiom1lW52SyzozwAAATNbSh3Es911.png-wh_50

step1:查看兩臺主機上的路由表

主機B上有2個網段:172和10,主機B的路由表如下

[root@storage ~]# route -n

Kernel IP routing table

Destination     Gateway         Genmask         Flags Metric Ref    Use Iface

10.0.208.0      0.0.0.0         255.255.255.0   U     0      0        0 eth0

172.16.1.0      0.0.0.0         255.255.255.0   U     0      0        0 eth1

169.254.0.0     0.0.0.0         255.255.0.0     U     1002   0        0 eth0

169.254.0.0     0.0.0.0         255.255.0.0     U     1003   0        0 eth1

0.0.0.0         10.0.208.254    0.0.0.0         UG    0      0        0 eth0

主機A上有3個網段:10.0.0.0/24,10.0.1.0/24和10.0.208.0/24,這裏只是用10.0.208.0/24網絡。主機A的路由表如下

[root@compute ~]# route -n

Kernel IP routing table

Destination     Gateway         Genmask         Flags Metric Ref    Use Iface

10.0.208.0      0.0.0.0         255.255.255.0   U     0      0        0 eth0

10.0.0.0        0.0.0.0         255.255.255.0   U     0      0        0 eth1

10.0.1.0        0.0.0.0         255.255.255.0   U     0      0        0 eth2

169.254.0.0     0.0.0.0         255.255.0.0     U     1002   0        0 eth0

169.254.0.0     0.0.0.0         255.255.0.0     U     1003   0        0 eth1

169.254.0.0     0.0.0.0         255.255.0.0     U     1004   0        0 eth2

0.0.0.0         10.0.208.254    0.0.0.0         UG    0      0        0 eth0

默認情況下是ping不通的:

[root@storage ~]# ping -I 172.16.1.254 10.0.208.181

PING 10.0.208.181 (10.0.208.181) from 172.16.1.254 : 56(84) bytes of data.

^C

--- 10.0.208.181 ping statistics ---

2 packets transmitted, 0 received, 100% packet loss, time 1774ms

step2:設置主機A的非對稱路由參數

主機A的路由參數

[root@compute ~]# sysctl -a|grep rp_filter

net.ipv4.conf.all.rp_filter = 1

net.ipv4.conf.all.arp_filter = 0

net.ipv4.conf.default.rp_filter = 1

net.ipv4.conf.default.arp_filter = 0

net.ipv4.conf.lo.rp_filter = 1

net.ipv4.conf.lo.arp_filter = 0

net.ipv4.conf.eth0.rp_filter = 1

net.ipv4.conf.eth0.arp_filter = 0

net.ipv4.conf.eth1.rp_filter = 1

net.ipv4.conf.eth1.arp_filter = 0

net.ipv4.conf.eth2.rp_filter = 1

net.ipv4.conf.eth2.arp_filter = 0

設置主機A的default.rp_filter

[root@compute ~]# sysctl -w  net.ipv4.conf.default.rp_filter=0

[root@compute ~]# sysctl -a|grep rp_filter

net.ipv4.conf.all.rp_filter = 1

net.ipv4.conf.all.arp_filter = 0

net.ipv4.conf.default.rp_filter = 0

net.ipv4.conf.default.arp_filter = 0

net.ipv4.conf.lo.rp_filter = 1

net.ipv4.conf.lo.arp_filter = 0

net.ipv4.conf.eth0.rp_filter = 1

net.ipv4.conf.eth0.arp_filter = 0

net.ipv4.conf.eth1.rp_filter = 1

net.ipv4.conf.eth1.arp_filter = 0

net.ipv4.conf.eth2.rp_filter = 1

net.ipv4.conf.eth2.arp_filter = 0

在主機B上繼續ping

[root@storage ~]# ping -I 172.16.1.254 10.0.208.181

PING 10.0.208.181 (10.0.208.181) from 172.16.1.254 : 56(84) bytes of data.

^C

--- 10.0.208.181 ping statistics ---

5 packets transmitted, 0 received, 100% packet loss, time 4662ms

發現還是不通

step3:在主機A上添加到172網段的路由

在主機A上添加路由172.16.1.0/24,下一跳指向主機B的eth0端口

[root@compute ~]# ip route add 172.16.1.0/24 via 10.0.208.194

[root@compute ~]# route -n

Kernel IP routing table

Destination     Gateway         Genmask         Flags Metric Ref    Use Iface

10.0.208.0      0.0.0.0         255.255.255.0   U     0      0        0 eth0

10.0.0.0        0.0.0.0         255.255.255.0   U     0      0        0 eth1

10.0.1.0        0.0.0.0         255.255.255.0   U     0      0        0 eth2

172.16.1.0      10.0.208.194    255.255.255.0   UG    0      0        0 eth0

169.254.0.0     0.0.0.0         255.255.0.0     U     1002   0        0 eth0

169.254.0.0     0.0.0.0         255.255.0.0     U     1003   0        0 eth1

169.254.0.0     0.0.0.0         255.255.0.0     U     1004   0        0 eth2

0.0.0.0         10.0.208.254    0.0.0.0         UG    0      0        0 eth0

此時在主機B上就可以ping通了

[root@storage ~]# ping -I 172.16.1.254 10.0.208.181

PING 10.0.208.181 (10.0.208.181) from 172.16.1.254 : 56(84) bytes of data.

64 bytes from 10.0.208.181: icmp_seq=1 ttl=64 time=0.414 ms

64 bytes from 10.0.208.181: icmp_seq=2 ttl=64 time=0.417 ms

64 bytes from 10.0.208.181: icmp_seq=3 ttl=64 time=0.360 ms

^C

--- 10.0.208.181 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2294ms

rtt min/avg/max/mdev = 0.360/0.397/0.417/0.026 ms

結論:這個問題的根本原因在於:

     在主機A上,默認網關指向10.0.208.254,當收到源地址是172.16.1.254的包時,回覆的包的目的地址是172.16.1.254,而主機A不知道172網段在哪裏,就會將該包發給網關10.0.208.254,而這個網關上也沒有到172.16.1.0/24網段的路由,所以就丟棄了。解決方法是在主機A上添加172.16.1.0/24網段的靜態路由,下一跳指向主機B的10.0.208.194地址即可。這是一個純粹的路由問題,之所以放到這篇文章中,就是要提醒大家在測試的時候要注意這種情況。

*********************************

【情況2】這是遇到的實際問題,實際項目中的IP地址被我修改成了10網段

*********************************

在R1上,執行ping -c 100 -I 10.1.0.1 10.2.0.2不通,需要能夠ping通。也就是在R1上,在ping的時候指定了原IP爲eth1接口的IP,目的IP爲R2的eth2接口IP

spacer.gifwKiom1lW547DXxkaAAAPjYnH7II879.png-wh_50

默認情況下是無法ping通的

情況2和情況3基本上是一樣的,只是情況3需要多配置一步而已

標紅的是使用到的端口


step1:查看三臺設備的端口IP和路由

controller  R2 ,本例中使用eth1/2

[root@controller ~]# ip addr list|egrep -E 'mtu|inet'|grep -v inet6

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

    inet 127.0.0.1/8 scope host lo

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

    inet 10.0.208.179/24 brd 10.0.208.255 scope global eth0

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

    inet 10.1.0.2/24 brd 10.1.0.255 scope global eth1

4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

    inet 10.2.0.2/24 brd 10.2.0.255 scope global eth2

[root@controller ~]# ip route

10.0.208.0/24 dev eth0  proto kernel  scope link  src 10.0.208.179

10.2.0.0/24 dev eth2  proto kernel  scope link  src 10.2.0.2

10.1.0.0/24 dev eth1  proto kernel  scope link  src 10.1.0.2

169.254.0.0/16 dev eth0  scope link  metric 1002

169.254.0.0/16 dev eth1  scope link  metric 1003

169.254.0.0/16 dev eth2  scope link  metric 1004

default via 10.1.0.1 dev eth1

network R1 ,本例中使用eth1/2/3

[root@network ~]# ip addr list|egrep -E 'mtu|inet'|grep -v inet6

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

    inet 127.0.0.1/8 scope host lo

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

    inet 10.0.208.180/24 brd 10.0.208.255 scope global eth0

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

    inet 10.1.0.1/24 brd 10.1.0.255 scope global eth1

4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

    inet 10.2.0.1/24 brd 10.2.0.255 scope global eth2

5: eth3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

    inet 10.3.0.1/24 brd 10.3.0.255 scope global eth3

[root@network ~]# ip route

10.0.208.0/24 dev eth0  proto kernel  scope link  src 10.0.208.180

10.2.0.0/24 dev eth2  proto kernel  scope link  src 10.2.0.1

10.3.0.0/24 dev eth3  proto kernel  scope link  src 10.3.0.1

10.1.0.0/24 dev eth1  proto kernel  scope link  src 10.1.0.1

169.254.0.0/16 dev eth0  scope link  metric 1002

169.254.0.0/16 dev eth1  scope link  metric 1003

169.254.0.0/16 dev eth2  scope link  metric 1004

169.254.0.0/16 dev eth3  scope link  metric 1005

default via 10.0.208.254 dev eth0

在R1上ping -I 10.1.0.1 10.2.0.2是不通的

step2:在R2上修改反向路徑檢查參數

[root@controller ~]# sysctl -a |grep -i rp_filter

net.ipv4.conf.all.rp_filter = 0

net.ipv4.conf.all.arp_filter = 0

net.ipv4.conf.default.rp_filter = 1

net.ipv4.conf.default.arp_filter = 0

net.ipv4.conf.lo.rp_filter = 1

net.ipv4.conf.lo.arp_filter = 0

net.ipv4.conf.eth0.rp_filter = 1

net.ipv4.conf.eth0.arp_filter = 0

net.ipv4.conf.eth1.rp_filter = 1

net.ipv4.conf.eth1.arp_filter = 0

net.ipv4.conf.eth2.rp_filter = 1

net.ipv4.conf.eth2.arp_filter = 0

sysctl -w  net.ipv4.conf.default.rp_filter=0   ###禁用反向路徑檢查

sysctl -w net.ipv4.conf.eth1.rp_filter=0  ###注意:要設置default和所有使用到的接口的參數,不能只設置default

sysctl -w net.ipv4.conf.eth2.rp_filter=0  ###同上

[root@controller ~]# sysctl -a |grep -i rp_filter

net.ipv4.conf.all.rp_filter = 0

net.ipv4.conf.all.arp_filter = 0

net.ipv4.conf.default.rp_filter = 0

net.ipv4.conf.default.arp_filter = 0

net.ipv4.conf.lo.rp_filter = 1

net.ipv4.conf.lo.arp_filter = 0

net.ipv4.conf.eth0.rp_filter = 1

net.ipv4.conf.eth0.arp_filter = 0

net.ipv4.conf.eth1.rp_filter = 0

net.ipv4.conf.eth1.arp_filter = 0

net.ipv4.conf.eth2.rp_filter = 0

net.ipv4.conf.eth2.arp_filter = 0

之後在R1上ping -I 10.1.0.1 10.2.0.2還是不通

step3:繼續在R1上也修改反向路徑檢查參數

sysctl -w  net.ipv4.conf.default.rp_filter=0

sysctl -w net.ipv4.conf.eth1.rp_filter=0

sysctl -w net.ipv4.conf.eth2.rp_filter=0

[root@network ~]# ping -I 10.1.0.1 10.2.0.2

PING 10.2.0.2 (10.2.0.2) from 10.1.0.1 : 56(84) bytes of data.

64 bytes from 10.2.0.2: icmp_seq=1 ttl=64 time=0.352 ms

64 bytes from 10.2.0.2: icmp_seq=2 ttl=64 time=0.454 ms

64 bytes from 10.2.0.2: icmp_seq=3 ttl=64 time=0.316 ms

^C

--- 10.2.0.2 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2302ms

結論:

     1 可以看到,在R2和R1上都禁用了反向路由檢查參數(注意:是所有使用到的接口+default)之後,才能在R1上ping通

     2 反向路徑檢查參數就是控制是否允許非對稱路由的。默認是打開反向路徑檢查(1),不允許非對稱路由;設置爲0表示禁用反向路徑檢查,允許非對稱路由。

     3 原理如下:默認情況下是打開反向路徑檢查的,這是爲了阻止地址欺騙***。所以,默認情況下,在R1上ping -I 10.1.0.1 10.2.0.2的時候,發送的數據包【源地址:10.1.0.1,目的地址:10.2.0.2】會從R1的eth2(10.2.0.1)出去,到R2的eth2(10.2.0.2)接口,因爲R1的路由表上有到10.2.0.0/24網段的路由,出口是eth2(詳見R1的路由表);而R2收到包後,需要檢查反向路由,此時的包【源地址:10.2.0.2,目的地址:10.1.0.1】會從R2的eth1(10.1.0.2)出去,到R1的eth1(10.1.0.1)接口,因爲R2的路由表上有到10.1.0.0/24網段的路由,出口是eth1(詳見R2的路由表),這樣,對R2和R1來說就造成了非對稱路由。解決方法就是禁止反向路由檢查。

需要注意的是:有時路由條目的緩存會影響測試效果,所以在每次配置修改完成後先刷新一下路由緩存:ip route flush cache

*********************************

【情況3】這是我從網上看到的也測試了一下,鏈接如下:http://m.blog.csdn.net/layrong/article/details/45673037

*********************************

要求如下:

如果一臺主機(或路由器)從接口A收到一個包,其源地址和目的地址分別是10.3.0.2和10.2.0.2,

即<saddr=10.3.0.2, daddr=10.2.0.2, iif=A>, 如果啓用反向路徑過濾功能,它就會以<saddr=10.2.0.2, daddr=10.3.0.2>爲關鍵字去查找路由表,如果得到的輸 出接口不爲A,則認爲反向路徑過濾檢查失敗,它就會丟棄該包。

     假設R2的兩個接口分別爲A(10.1.0.2)、B(10.2.0.2)。 從PC ping 10.2.0.2時,包的路徑是PC-->10.3.0.1-->10.2.0.2, 此時包的 <saddr=10.3.0.2, daddr=10.2.0.2, iif=B>, 以<saddr=10.2.0.2, daddr=10.3.0.2>進行反向路徑檢查, 得到輸出設備是A, 因爲目的地址是10.3.0.2,只能使用默認路由。A!=B,反向路徑檢查失敗, 丟棄該包!

spacer.gifwKioL1lW58Kzq9JuAAAX3jgLMQE939.png-wh_50

step1:查看三臺設備的端口IP和路由

controller  R2 ,本例中使用eth1/2

[root@controller ~]# ip addr list|egrep -E 'mtu|inet'|grep -v inet6

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

    inet 127.0.0.1/8 scope host lo

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

    inet 10.0.208.179/24 brd 10.0.208.255 scope global eth0

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

    inet 10.1.0.2/24 brd 10.1.0.255 scope global eth1

4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

    inet 10.2.0.2/24 brd 10.2.0.255 scope global eth2

[root@controller ~]# ip route

10.0.208.0/24 dev eth0  proto kernel  scope link  src 10.0.208.179

10.2.0.0/24 dev eth2  proto kernel  scope link  src 10.2.0.2

10.1.0.0/24 dev eth1  proto kernel  scope link  src 10.1.0.2

169.254.0.0/16 dev eth0  scope link  metric 1002

169.254.0.0/16 dev eth1  scope link  metric 1003

169.254.0.0/16 dev eth2  scope link  metric 1004

default via 10.1.0.1 dev eth1

network R1 ,本例中使用eth1/2/3

[root@network ~]# ip addr list|egrep -E 'mtu|inet'|grep -v inet6

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

    inet 127.0.0.1/8 scope host lo

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

    inet 10.0.208.180/24 brd 10.0.208.255 scope global eth0

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

    inet 10.1.0.1/24 brd 10.1.0.255 scope global eth1

4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

    inet 10.2.0.1/24 brd 10.2.0.255 scope global eth2

5: eth3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

    inet 10.3.0.1/24 brd 10.3.0.255 scope global eth3

[root@network ~]# ip route

10.0.208.0/24 dev eth0  proto kernel  scope link  src 10.0.208.180

10.2.0.0/24 dev eth2  proto kernel  scope link  src 10.2.0.1

10.3.0.0/24 dev eth3  proto kernel  scope link  src 10.3.0.1

10.1.0.0/24 dev eth1  proto kernel  scope link  src 10.1.0.1

169.254.0.0/16 dev eth0  scope link  metric 1002

169.254.0.0/16 dev eth1  scope link  metric 1003

169.254.0.0/16 dev eth2  scope link  metric 1004

169.254.0.0/16 dev eth3  scope link  metric 1005

default via 10.0.208.254 dev eth0

comput PC ,本例中只使用eth3

[root@compute ~]# ip addr list|egrep -E 'mtu|inet'|grep -v inet6

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

    inet 127.0.0.1/8 scope host lo

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

    inet 10.0.208.181/24 brd 10.0.208.255 scope global eth0

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

    inet 10.0.0.31/24 brd 10.0.0.255 scope global eth1

4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

    inet 10.0.1.31/24 brd 10.0.1.255 scope global eth2

5: eth3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000

    inet 10.3.0.2/24 brd 10.3.0.255 scope global eth3

[root@compute ~]# ip route

10.0.208.0/24 dev eth0  proto kernel  scope link  src 10.0.208.181

10.0.0.0/24 dev eth1  proto kernel  scope link  src 10.0.0.31

10.0.1.0/24 dev eth2  proto kernel  scope link  src 10.0.1.31

10.3.0.0/24 dev eth3  proto kernel  scope link  src 10.3.0.2

169.254.0.0/16 dev eth0  scope link  metric 1002

169.254.0.0/16 dev eth1  scope link  metric 1003

169.254.0.0/16 dev eth2  scope link  metric 1004

169.254.0.0/16 dev eth3  scope link  metric 1005

default via 10.3.0.1 dev eth3

在PC上ping 10.2.0.2或者掛着源IP 10.3.0.2來ping 10.2.0.2(都是一樣的),都是不通的

[root@compute ~]# ping 10.2.0.2

[root@compute ~]# ping -I 10.3.0.2 10.2.0.2

step2:在R2上修改內核參數

[root@controller ~]# sysctl -a |grep -i rp_filter

net.ipv4.conf.all.rp_filter = 0

net.ipv4.conf.all.arp_filter = 0

net.ipv4.conf.default.rp_filter = 1

net.ipv4.conf.default.arp_filter = 0

net.ipv4.conf.lo.rp_filter = 1

net.ipv4.conf.lo.arp_filter = 0

net.ipv4.conf.eth0.rp_filter = 1

net.ipv4.conf.eth0.arp_filter = 0

net.ipv4.conf.eth1.rp_filter = 1

net.ipv4.conf.eth1.arp_filter = 0

net.ipv4.conf.eth2.rp_filter = 1

net.ipv4.conf.eth2.arp_filter = 0

sysctl -w  net.ipv4.conf.default.rp_filter=0   ###禁用反向路徑檢查

sysctl -w net.ipv4.conf.eth1.rp_filter=0  ###注意:要設置default和所有使用到的接口的參數,不能只設置default

sysctl -w net.ipv4.conf.eth2.rp_filter=0  ###同上

[root@controller ~]# sysctl -a|grep rp_filter

net.ipv4.conf.all.rp_filter = 0

net.ipv4.conf.all.arp_filter = 0

net.ipv4.conf.default.rp_filter = 0

net.ipv4.conf.default.arp_filter = 0

net.ipv4.conf.lo.rp_filter = 1

net.ipv4.conf.lo.arp_filter = 0

net.ipv4.conf.eth0.rp_filter = 1

net.ipv4.conf.eth0.arp_filter = 0

net.ipv4.conf.eth1.rp_filter = 0

net.ipv4.conf.eth1.arp_filter = 0

net.ipv4.conf.eth2.rp_filter = 0

net.ipv4.conf.eth2.arp_filter = 0

在R1上修改內核參數

sysctl -w  net.ipv4.conf.default.rp_filter=0 

sysctl -w net.ipv4.conf.eth1.rp_filter=0 

sysctl -w net.ipv4.conf.eth2.rp_filter=0 

[root@network ~]# sysctl -a|grep rp_filter

net.ipv4.conf.all.rp_filter = 0

net.ipv4.conf.all.arp_filter = 0

net.ipv4.conf.default.rp_filter = 0

net.ipv4.conf.default.arp_filter = 0

net.ipv4.conf.lo.rp_filter = 1

net.ipv4.conf.lo.arp_filter = 0

net.ipv4.conf.eth0.rp_filter = 1

net.ipv4.conf.eth0.arp_filter = 0

net.ipv4.conf.eth1.rp_filter = 0

net.ipv4.conf.eth1.arp_filter = 0

net.ipv4.conf.eth2.rp_filter = 0

net.ipv4.conf.eth2.arp_filter = 0

net.ipv4.conf.eth3.rp_filter = 1

net.ipv4.conf.eth3.arp_filter = 0

之後在PC上進行ping測試: ping -I 10.3.0.2 10.2.0.2 ,不通,這是因爲R1是作爲路由器使用的,需要在R1上打開轉發

step3:在R1上打開路由轉發:

[root@network ~]# sysctl -w net.ipv4.ip_forward=1

在R2/R1和PC上清空緩存,避免對測試產生影響

ip route flush cache

此時在PC上進行ping測試: ping -I 10.3.0.2 10.2.0.2 通了

結論:

     1 可以看到,在R2和R1上都禁用了反向路由檢查參數(注意:是所有使用到的接口+default)之後,並且在R1上打開了路由轉發,才能在PC上ping通

     2 原理如下:默認情況下是打開反向路徑檢查的,這是爲了阻止地址欺騙***。所以,默認情況下,在PC上ping -I 10.3.0.2 10.2.0.2 的時候,發送的數據包【源地址:10.3.0.2,目的地址:10.2.0.2】會從到R1的eth3接口,之後從R1的eth2(10.2.0.1)出去,到R2的eth2(10.2.0.2)接口,因爲R1的路由表上有到10.2.0.0/24網段的路由,出口是eth2(詳見R1的路由表);而R2收到包後,需要檢查反向路由,此時的包【源地址:10.2.0.2,目的地址:10.3.0.2】會從R2的eth1(10.1.0.2)出去,到R1的eth1(10.1.0.1)接口,因爲R2的路由表上的默認路由可以到達10.3.0.0/24網段,出口是eth1(詳見R2的路由表),這樣,對R2和R1來說就造成了非對稱路由。解決方法就是禁止反向路由檢查以允許非對稱路由。

需要說明的是:在http://m.blog.csdn.net/layrong/article/details/45673037這個鏈接中,作者提到了兩種方法,第二種方法是給R2上添加了一條靜態路由:[root@controller ~]# ip route add 10.3.0.0/24 via 10.2.0.1,也確實可以實現ping通的目標,需要注意的是,對於第二種方法:

     也需要設置R1的路由轉發

     不需要在R1/R2上關閉反向路由解析(使用默認的打開模式即可),因爲此時我在R2上添加了一條到10.3.0.0/24網段的靜態路由,是走R2的eth2(10.2.0.2)接口,之後到R1的eth2(10.2.0.1)接口的,數據包會走這條明細路由,而不會像之前那樣走默認路由了,此時就是對稱路由了。


發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章