ThreadLoca的原理以及使用過程中爲什麼會出現內存泄漏

一、ThreadLocal的實現

ThreadLocal源碼:


public class ThreadLocal<T> {

    private final int threadLocalHashCode = nextHashCode();

    private static AtomicInteger nextHashCode =
        new AtomicInteger();


    private static final int HASH_INCREMENT = 0x61c88647;

 
    private static int nextHashCode() {
        return nextHashCode.getAndAdd(HASH_INCREMENT);
    }

    protected T initialValue() {
        return null;
    }

    public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier) {
        return new SuppliedThreadLocal<>(supplier);
    }

    public ThreadLocal() {
    }

    public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }


    private T setInitialValue() {
        T value = initialValue();
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
        return value;
    }

    public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }

     public void remove() {
         ThreadLocalMap m = getMap(Thread.currentThread());
         if (m != null)
             m.remove(this);
     }

    ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
    }

    void createMap(Thread t, T firstValue) {
        t.threadLocals = new ThreadLocalMap(this, firstValue);
    }

    static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
        return new ThreadLocalMap(parentMap);
    }

    T childValue(T parentValue) {
        throw new UnsupportedOperationException();
    }

 
    static final class SuppliedThreadLocal<T> extends ThreadLocal<T> {

        private final Supplier<? extends T> supplier;

        SuppliedThreadLocal(Supplier<? extends T> supplier) {
            this.supplier = Objects.requireNonNull(supplier);
        }

        @Override
        protected T initialValue() {
            return supplier.get();
        }
    }
}


上面的代碼先不用看,跟着分析的思路走,核心的一些東西都會解釋到的,先看下set方法:

    public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }

可以看出,我們需要的線程變量被維護在一個ThreadLocalMap對象裏。而ThreadLocalMap維護在Thread裏面。
下面看下ThreadLocalMap這個類,這是ThreadLocal的靜態內部類,應該是希望不讓ThreadLocalMap與其他不相關的類產生關係,所以使用靜態內部類的方式來定義。

static class ThreadLocalMap {

        static class Entry extends WeakReference<ThreadLocal<?>> {
            /** The value associated with this ThreadLocal. */
            Object value;

            Entry(ThreadLocal<?> k, Object v) {
                super(k);
                value = v;
            }
        }
        private static final int INITIAL_CAPACITY = 16;

        private Entry[] table;

        private int size = 0;

        private int threshold; // Default to 0

        private void setThreshold(int len) {
            threshold = len * 2 / 3;
        }

        private static int nextIndex(int i, int len) {
            return ((i + 1 < len) ? i + 1 : 0);
        }

        private static int prevIndex(int i, int len) {
            return ((i - 1 >= 0) ? i - 1 : len - 1);
        }

        ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
            table = new Entry[INITIAL_CAPACITY];
            int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
            table[i] = new Entry(firstKey, firstValue);
            size = 1;
            setThreshold(INITIAL_CAPACITY);
        }

        private ThreadLocalMap(ThreadLocalMap parentMap) {
            Entry[] parentTable = parentMap.table;
            int len = parentTable.length;
            setThreshold(len);
            table = new Entry[len];

            for (int j = 0; j < len; j++) {
                Entry e = parentTable[j];
                if (e != null) {
                    @SuppressWarnings("unchecked")
                    ThreadLocal<Object> key = (ThreadLocal<Object>) e.get();
                    if (key != null) {
                        Object value = key.childValue(e.value);
                        Entry c = new Entry(key, value);
                        int h = key.threadLocalHashCode & (len - 1);
                        while (table[h] != null)
                            h = nextIndex(h, len);
                        table[h] = c;
                        size++;
                    }
                }
            }
        }

        private Entry getEntry(ThreadLocal<?> key) {
            int i = key.threadLocalHashCode & (table.length - 1);
            Entry e = table[i];
            if (e != null && e.get() == key)
                return e;
            else
                return getEntryAfterMiss(key, i, e);
        }

        private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
            Entry[] tab = table;
            int len = tab.length;

            while (e != null) {
                ThreadLocal<?> k = e.get();
                if (k == key)
                    return e;
                if (k == null)
                    expungeStaleEntry(i);
                else
                    i = nextIndex(i, len);
                e = tab[i];
            }
            return null;
        }


        private void set(ThreadLocal<?> key, Object value) {
            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);

            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                ThreadLocal<?> k = e.get();

                if (k == key) {
                    e.value = value;
                    return;
                }

                if (k == null) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }

            tab[i] = new Entry(key, value);
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        }


        private void remove(ThreadLocal<?> key) {
            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);
            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                if (e.get() == key) {
                    e.clear();
                    expungeStaleEntry(i);
                    return;
                }
            }
        }

        private void replaceStaleEntry(ThreadLocal<?> key, Object value,
                                       int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;
            Entry e;

            int slotToExpunge = staleSlot;
            for (int i = prevIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = prevIndex(i, len))
                if (e.get() == null)
                    slotToExpunge = i;

            for (int i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal<?> k = e.get();

                if (k == key) {
                    e.value = value;

                    tab[i] = tab[staleSlot];
                    tab[staleSlot] = e;

                    if (slotToExpunge == staleSlot)
                        slotToExpunge = i;
                    cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
                    return;
                }

                if (k == null && slotToExpunge == staleSlot)
                    slotToExpunge = i;
            }

            tab[staleSlot].value = null;
            tab[staleSlot] = new Entry(key, value);

            if (slotToExpunge != staleSlot)
                cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
        }
        private int expungeStaleEntry(int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;

            tab[staleSlot].value = null;
            tab[staleSlot] = null;
            size--;

            Entry e;
            int i;
            for (i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal<?> k = e.get();
                if (k == null) {
                    e.value = null;
                    tab[i] = null;
                    size--;
                } else {
                    int h = k.threadLocalHashCode & (len - 1);
                    if (h != i) {
                        tab[i] = null;
                        while (tab[h] != null)
                            h = nextIndex(h, len);
                        tab[h] = e;
                    }
                }
            }
            return i;
        }
        private boolean cleanSomeSlots(int i, int n) {
            boolean removed = false;
            Entry[] tab = table;
            int len = tab.length;
            do {
                i = nextIndex(i, len);
                Entry e = tab[i];
                if (e != null && e.get() == null) {
                    n = len;
                    removed = true;
                    i = expungeStaleEntry(i);
                }
            } while ( (n >>>= 1) != 0);
            return removed;
        }

        private void rehash() {
            expungeStaleEntries();

            if (size >= threshold - threshold / 4)
                resize();
        }

        private void resize() {
            Entry[] oldTab = table;
            int oldLen = oldTab.length;
            int newLen = oldLen * 2;
            Entry[] newTab = new Entry[newLen];
            int count = 0;

            for (int j = 0; j < oldLen; ++j) {
                Entry e = oldTab[j];
                if (e != null) {
                    ThreadLocal<?> k = e.get();
                    if (k == null) {
                        e.value = null; // Help the GC
                    } else {
                        int h = k.threadLocalHashCode & (newLen - 1);
                        while (newTab[h] != null)
                            h = nextIndex(h, newLen);
                        newTab[h] = e;
                        count++;
                    }
                }
            }

            setThreshold(newLen);
            size = count;
            table = newTab;
        }

        private void expungeStaleEntries() {
            Entry[] tab = table;
            int len = tab.length;
            for (int j = 0; j < len; j++) {
                Entry e = tab[j];
                if (e != null && e.get() == null)
                    expungeStaleEntry(j);
            }
        }
    }

ThreadLocalMap使用Entry保存值,看下Entry結構

static class Entry extends WeakReference<ThreadLocal<?>> {
            /** The value associated with this ThreadLocal. */
            Object value;

            Entry(ThreadLocal<?> k, Object v) {
            	//實際上真正弱引用的是ThreadLocal對象
                super(k);
                value = v;
            }
        }

Entry繼承了WeakReference。
看下ThreadLocalMap的構造方法:

        ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
        	//創建一個容量爲16的Entry數組
            table = new Entry[INITIAL_CAPACITY];
            //計算第一個Entry在數組中的索引
            int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
            //初始化第一個Entry
            table[i] = new Entry(firstKey, firstValue);
            size = 1;
            //設置擴容的閾值(負載因子是2/3)
            setThreshold(INITIAL_CAPACITY);
        }

ThreadLocalMap維護了一個Entry數組。
下面看下ThreadLocalMap如何進行set操作

        private void set(ThreadLocal<?> key, Object value) {
            Entry[] tab = table;
            int len = tab.length;
            //通過ThreadLocal的hashcode計算存放的數組的索引位置
            int i = key.threadLocalHashCode & (len-1);
			// 遍歷當前entry數組,看key對應的Entry是否已經存在,如果存在就覆蓋掉老的值
            for (Entry e = tab[i]; //獲取一個Entry
                 e != null; 
                 e = tab[i = nextIndex(i, len)]) {
                 //獲取當前entry保存的ThreadLocal弱引用對象
                ThreadLocal<?> k = e.get();
				//如果當前的key存在,則覆蓋原來的value
                if (k == key) {
                    e.value = value;
                    return;
                }
				//如果key爲null,替換這個廢棄的Entry。(一般情況就是由於弱引用被垃圾回收機制回收了)
                if (k == null) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }
			//如果不存在key對應的Entry,則新生成一個Entry,並放到Entry[]中
            tab[i] = new Entry(key, value);
            int sz = ++size;
            //如果Entry[]中,存在Entry的ThreadLocal引用爲null(一般是被被gc回收)的Entry,避免內存泄漏
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        }

二、Thread類對ThreadLocal的支持

Thread類維護了一個threadLocals,threadLocals爲當前線程維護一個ThreadLocal.ThreadLocalMap,使用這種方式,每個線程類都會有自己的一個threadLocals,這個threadLocals維護了當前線程的所有ThreadLocal。

ThreadLocal.ThreadLocalMap threadLocals = null;

三、ThreadLocal機制的內存機制

在這裏插入圖片描述

內存泄漏的原因

從上面的圖中可以看到,相關GC ROOT一共有三個,其中比較值得關注的是ThreadRef這個GC ROOT,因爲這個引用的生命週期依賴於線程的生命週期。
正常情況下,線程結束後,Thread對象,ThreadLocalMap對象,以及ThreadLocalMap對象中的Entry對象纔會被jvm回收(當線程退出時,Thread類執行清理操作,詳見Thread類的exit方法),但是如果這個線程不結束呢?那麼Entry對象將永遠不會被回收(典型的情況就是使用線程數固定的線程池)。

如何解決內存泄漏

Java爲了最小化減少內存泄露的可能性和影響,在ThreadLocal的get,set的時候都會清除線程Map裏所有key爲null的value。
所以最怕的情況就是,threadLocal對象設null了,開始發生“內存泄露”,然後使用線程池,這個線程結束,線程放回線程池中不銷燬,這個線程一直不被使用,或者分配使用了又不再調用get,set方法,那麼這個期間就會發生真正的內存泄露。
最直接的解決方法,在使用後及時調用ThreadLocal的remove()方法,這個方法會移除Entry數組中ThreadLocal對象對應的Entry對象,避免出現Entry(null->T對象)的情況。

附:SimpleDateFormat結合ThreadLocal實現線程安全(節選自其他文章,如使用最好先做下自測)

//SimpleDateFormat緩存
private static Map<String, ThreadLocal<SimpleDateFormat>> sdfMap = 
                            new HashMap<String, ThreadLocal<SimpleDateFormat>>();
//對象鎖
private static ReentrantLock sdfLock = new ReentrantLock();
/**
  * @Description: 推薦直接使用該方法 獲取 DateFormat對象
  *     推薦理由:SimpleDateFormat非線程安全且生成開銷大
  * @param pattern 格式規則
  * @return DateFormat
  */
public static SimpleDateFormat getDateFormat(final String pattern) {
    ThreadLocal<SimpleDateFormat> tl = sdfMap.get(pattern);
    if (tl == null) {
        try {
            //最多10毫秒
            if (!sdfLock.tryLock(10, TimeUnit.MILLISECONDS)) {
                return new SimpleDateFormat(pattern);
            }
            tl = sdfMap.get(pattern);
            if (tl == null) {
                tl = new ThreadLocal<SimpleDateFormat>() {
                    //這裏重寫initialValue,第一次get就獲取該初始化,省去了set操作
                    @Override
                    protected SimpleDateFormat initialValue() {
                        return new SimpleDateFormat(pattern);
                    }
                };
                sdfMap.put(pattern, tl);
            }
        } catch (Exception exception) {
            log.error(exception.getMessage());
        } finally {
            sdfLock.unlock();
        }
    }
    return tl.get();
}

注意:每個線程都會有一個SimpleDateFormat對象,如果線程池中固定線程的數量很多,那麼SimpleDateFormat對象數量也會很多,可能造成內存泄漏,如果感覺不爽的話,用java8的LocalDate(LocalDateTime)

ThreadLocal設置爲static

ThreadLocal 實例通常是類中的 private static 字段,它們希望將狀態與某一個線程(例如,用戶 ID 或事務 ID)相關聯。
下面是ThreadLocal類中給出的一個示例。

  public class ThreadId {
      // Atomic integer containing the next thread ID to be assigned
      private static final AtomicInteger nextId = new AtomicInteger(0);
 
      // Thread local variable containing each thread's ID
      private static final ThreadLocal<Integer> threadId =
         new ThreadLocal<Integer>() {
             @Override 
             protected Integer initialValue() {
                 return nextId.getAndIncrement();
          }
      };
 
      // Returns the current thread's unique ID, assigning it if necessary
      public static int get() {
          return threadId.get();
      }
  }

引用:

在這裏插入圖片描述

參考

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章