zookeeper集群搭建

zookeeper单机搭建(基于Linux)

第一步:
安装jdk
第二步:解压缩zookeeper压缩包
第三步:将conf文件夹下zoo_sample.cfg复制一份,改名为zoo.cfg
第四步:修改配置dataDir属性,指定一个真实目录(进入zookeeper解压目录,创建data目录:mkdir data)
第五步:启动zookeeper:bin/zkServer.sh start关闭zookeeper:bin/zkServer.sh stop查看zookeeper状态:bin/zkServer.sh status注意关闭防火墙。

dubbo相关依赖

	1. 项目中添加dubbo的依赖加入dubbo相关的jar包。服务层、表现层都添加。
<!-- dubbo相关 -->
           <dependency>
                 <groupId>com.alibaba</groupId>
                 <artifactId>dubbo</artifactId>
                 <!-- 排除依赖 -->
                 <exclusions>
                      <exclusion>
                            <groupId>org.springframework</groupId>
                            <artifactId>spring</artifactId>
                      </exclusion>
                      <exclusion>
                            <groupId>org.jboss.netty</groupId>
                            <artifactId>netty</artifactId>
                      </exclusion>
                 </exclusions>
           </dependency>
           <dependency>
                 <groupId>org.apache.zookeeper</groupId>
                 <artifactId>zookeeper</artifactId>
           </dependency>
           <dependency>
                 <groupId>com.github.sgroschupf</groupId>
                 <artifactId>zkclient</artifactId>
           </dependency>

zookeeper集群搭建

集群拥有以下两个特点:

  1. 可扩展性:集群的性能不限制於单一的服务实体,新的服务实体可以动态的添加到集群,从而增强集群的性能。
  2. 高可用性:集群当其中一个节点发生故障时,这台节点上面所运行的应用程序将在另一台节点被自动接管,消除单点故障对于增强数据可用性、可达性和可靠性是非常重要的。
    集群必须拥有以下两大能力:
  3. 负载均衡:负载均衡把任务比较均匀的分布到集群环境下的计算和网络资源,以提高数据吞吐量。
  4. 错误恢复:如果集群中的某一台服务器由于故障或者维护需要无法使用,资源和应用程序将转移到可用的集群节点上。这种由于某个节点的资源不能工作,另一个可用节点中的资源能够透明的接管并继续完成任务的过程,叫做错误恢复。
    负载均衡和错误恢复要求各服务实体中有执行同一任务的资源存在,而且对于同一任务的各个资源来说,执行任务所需的信息视图必须是相同的。

Zookeeper的启动过程中leader选举是非常重要而且最复杂的一个环节。那么什么是leader选举呢?zookeeper为什么需要leader选举呢?zookeeper的leader选举的过程又是什么样子的?
首先我们来看看什么是leader选举。其实这个很好理解,leader选举就像总统选举一样,每人一票,获得多数票的人就当选为总统了。在zookeeper集群中也是一样,每个节点都会投票,如果某个节点获得超过半数以上的节点的投票,则该节点就是leader节点了。
以一个简单的例子来说明整个选举的过程.
假设有五台服务器组成的zookeeper集群,它们的id从1-5,同时它们都是最新启动的,也就是没有历史数据,在存放数据量这一点上,都是一样的.假设这些服务器依序启动,来看看会发生什么 。
1) 服务器1启动,此时只有它一台服务器启动了,它发出去的报没有任何响应,所以它的选举状态一直是LOOKING状态
2) 服务器2启动,它与最开始启动的服务器1进行通信,互相交换自己的选举结果,由于两者都没有历史数据,所以id值较大的服务器2胜出,但是由于没有达到超过半数以上的服务器都同意选举它(这个例子中的半数以上是3),所以服务器1,2还是继续保持LOOKING状态.
3) 服务器3启动,根据前面的理论分析,服务器3成为服务器1,2,3中的老大,而与上面不同的是,此时有三台服务器选举了它,所以它成为了这次选举的leader.
4) 服务器4启动,根据前面的分析,理论上服务器4应该是服务器1,2,3,4中最大的,但是由于前面已经有半数以上的服务器选举了服务器3,所以它只能接收当小弟的命了.
5) 服务器5启动,同4一样,当小弟
搭建Zookeeper集群
2.2.1搭建要求
真实的集群是需要部署在不同的服务器上的,但是在我们测试时同时启动十几个虚拟机内存会吃不消,所以我们通常会搭建伪集群,也就是把所有的服务都搭建在一台虚拟机上,用端口进行区分。
我们这里要求搭建一个三个节点的Zookeeper集群(伪集群)。
2.2.2准备工作
重新部署一台虚拟机作为我们搭建集群的测试服务器。
(1)安装JDK 【此步骤省略】。
(2)Zookeeper压缩包上传到服务器
(3)将Zookeeper解压 ,创建data目录 ,将 conf下zoo_sample.cfg 文件改名为 zoo.cfg
(4)建立/usr/local/zookeeper-cluster目录,将解压后的Zookeeper复制到以下三个目录
/usr/local/zookeeper-cluster/zookeeper-1
/usr/local/zookeeper-cluster/zookeeper-2
/usr/local/zookeeper-cluster/zookeeper-3
[root@localhost ~]# mkdir /usr/local/zookeeper-cluster
[root@localhost ~]# cp -r zookeeper-3.4.6 /usr/local/zookeeper-cluster/zookeeper-1
[root@localhost ~]# cp -r zookeeper-3.4.6 /usr/local/zookeeper-cluster/zookeeper-2
[root@localhost ~]# cp -r zookeeper-3.4.6 /usr/local/zookeeper-cluster/zookeeper-3

(5) 配置每一个Zookeeper 的dataDir(zoo.cfg) clientPort 分别为2181 2182 2183
修改/usr/local/zookeeper-cluster/zookeeper-1/conf/zoo.cfg
clientPort=2181
dataDir=/usr/local/zookeeper-cluster/zookeeper-1/data
修改/usr/local/zookeeper-cluster/zookeeper-2/conf/zoo.cfg
clientPort=2182
dataDir=/usr/local/zookeeper-cluster/zookeeper-2/data
修改/usr/local/zookeeper-cluster/zookeeper-3/conf/zoo.cfg
clientPort=2183
dataDir=/usr/local/zookeeper-cluster/zookeeper-3/data
2.2.3配置集群
(1)在每个zookeeper的 data 目录下创建一个 myid 文件,内容分别是1、2、3 。这个文件就是记录每个服务器的ID

如果你要创建的文本文件内容比较简单,我们可以通过echo 命令快速创建文件
格式为:
echo 内容 >文件名
例如我们为第一个zookeeper指定ID为1,则输入命令

(2)在每一个zookeeper 的 zoo.cfg配置客户端访问端口(clientPort)和集群服务器IP列表。
集群服务器IP列表如下
server.1=192.168.25.140:2881:3881
server.2=192.168.25.140:2882:3882
server.3=192.168.25.140:2883:3883
解释:server.服务器ID=服务器IP地址:服务器之间通信端口:服务器之间投票选举端口

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章