Linux下使用ZMQ實踐之與libevent結合

1. 前言

        最近考慮到一個問題,項目中有同時處理socket、zeromq的邏輯需求,想通過libevent(I/O服用)一塊將zmq-socket的事件也放一個線程中處理。
        網上了解了一些實現,大部分都是通過將zmq的sockfd拿到,加入libevent_dispatch中一併處理,但是存在問題是實時性不夠,寫法不對導致丟事件的情況。
       上述的根本原因是:zeromq是通過底層獨立線程完成socket層面的收發,拷貝到內存隊列供給上層業務使用。強行監聽socket事件,但實際數據獲取還是從內存隊列拿取,肯定是存在時效性的問題。
       所以,本文嘗試一種方法,服務端這塊直接剖析zeromq協議zmtp,不要zmq子線程、內存隊列,直接從socket層面收取數據;客戶端仍然兼容libzmq常規的寫法。

2. 相關知識

根據 zmtp官方說明 的解讀:
協議流程主要爲:打招呼greeting、握手handshake、通信traffic
通信內容主要分爲命令command、消息message

2.1 Greeting格式

Greeting 又可以細分爲:簽名signature、版本號version、機器碼mechanism、類型as-server、擴展filter;主要是zmq考慮到了多種協議版本、多種協議類型,考慮的字段信息就多了。

;   The greeting announces the protocol details

greeting = signature version mechanism as-server filler

signature = %xFF padding %x7F
padding = 8OCTET        ; Not significant

version = version-major version-minor
version-major = %x03
version-minor = %x00

;   The mechanism is a null padded string
mechanism = 20mechanism-char
mechanism-char = "A"-"Z" | DIGIT
    | "-" | "_" | "." | "+" | %x0

;   Is the peer acting as server?
as-server = %x00 | %x01

;   The filler extends the greeting to 64 octets
filler = 31%x00             ; 31 zero octets

2.1 Handshake格式

Handshake相比Greeting簡單多了,一個command搞定

;   The handshake consists of at least one command
;   The actual grammar depends on the security mechanism
handshake = 1*command

2.2 Command格式

Command提供了長命令、短命令進行選擇;與Message不同的是,Command數據域body還拆分出命令名稱Command-name和命令數據Command-data,這塊主要用到的地方是包含在數據幀中,配合Message進行信息控制交互;

;   A command is a single long or short frame
command = command-size command-body
command-size = %x04 short-size | %x06 long-size
short-size = OCTET          ; Body is 0 to 255 octets
long-size = 8OCTET          ; Body is 0 to 2^63-1 octets
command-body = command-name command-data
command-name = OCTET 1*255command-name-char
command-name-char = ALPHA
command-data = *OCTET

2.3 Message格式

Message內部其實提供了兩種類型(長消息、短消息)、兩種標記(獨立報文、組合報文)進行靈活選擇

;   A message is one or more frames
message = *message-more message-last
message-more = ( %x01 short-size | %x03 long-size ) message-body
message-last = ( %x00 short-size | %x02 long-size ) message-body
message-body = *OCTET

3. 實踐

通過zmtp協議的指導,我們選取一個方向來實踐一下:push-pull 協議、libevent::buffer_event

3.1 連接握手

這次先看一下主函數,有個大概的印象:socket連接__do_connect,zmq握手__do_handshake,回調函數拉數據on_recv

int main(int argc, char *argv[])
{
    int res = -1;
    struct bufferevent *bev = NULL;
    struct event_base *base = NULL;
    struct msg_ctx mctx = {0};
    mctx.evbuf = evbuffer_new();
    __do_reset(&mctx);

    if (argc < 2) {
        printf("%s <address>\n", argv[0], argv[1]);
        exit(EXIT_FAILURE);
    }
    printf("Program start...\n");

    base = event_base_new();
    assert(base);

    bev = __do_connect(base, argv[1]);
    res = __do_handshark(bev);
    assert(res == 0);

    bufferevent_setwatermark(bev, EV_READ, 0, 0);
    bufferevent_setcb(bev, on_recv, NULL, NULL, &mctx);
    bufferevent_enable(bev, EV_READ);

    event_base_dispatch(base);

    printf("Program quit...\n");
    sleep(5);
    return EXIT_SUCCESS;
}

本端實現的是pull的功能,需要連接到push,然後進行拉取數據;
socket建立連接使用的常規的bufferevent_socket_connect的方法

static struct bufferevent *__do_connect(struct event_base *base, const char *paddr)
{
    int res = -1;
    int dstlen = sizeof(struct sockaddr_storage);

    struct bufferevent *bev = NULL;
    struct sockaddr_storage dst;

    res = evutil_parse_sockaddr_port(paddr, (struct sockaddr *)&dst, &dstlen);
    assert(0 == res);

    bev = bufferevent_socket_new(base, -1, BEV_OPT_CLOSE_ON_FREE);
    assert(bev);

    res = bufferevent_socket_connect(bev, (struct sockaddr *)&dst, dstlen);
    assert(0 == res);

    return bev;
}

下來準備看握手過程的實現,先看一下結構體的定義是怎麼跟zmtp結合的;這裏有個地方注意一下,zmtp3.0與2.0協議格式還不一致,所以先制定約束:使用v3協議,不做v2的兼容。

/*
 * ZMTP 3.0
 * connection = greeting handshake traffic
 *
 * This is the 3.0 greeting (64 bytes)
 * greeting = signature version mechanism as-server filler
 */
struct zmtp_greeting {
    char signature [10];    // %xFF padding %x7F
    char version [2];        // version-major %x03, version-minor %x00
    char mechanism [20];    // The mechanism is a null padded string
    char as_server [1];        // Is the peer acting as server
    char filler [31];        // The filler extends the greeting to 64 octets
};

從第2小節可以看出,Message和Command是類似的,這裏我們全抽象爲:flags、size、data(柔性數組)

/*
 * A message is one or more frames
 *
 * message = *message-more message-last
 * message-more = ( %x01 short-size | %x03 long-size ) message-body
 * message-last = ( %x00 short-size | %x02 long-size ) message-body
 * message-body = *OCTET
 *
 * short-size = OCTET          ; Body is 0 to 255 octets
 * long-size = 8OCTET          ; Body is 0 to 2^63-1 octets
 *
 */
struct zmtp_msg_shdr {
    u8 flags;             //  Must be zero
    u8 size;              //  Size, 0 to 255 bytes
    u8 data [0];          //  Message data
};

struct zmtp_msg_lhdr {
    u8 flags;             //  Must be zero
    u64 size;             //  Size, 0 to 255 bytes
    u8 data [0];          //  Message data
};

結構體準備好了,我們看一個握手的快速實現,這裏說的快速是指使用阻塞同步的形式完成;另外一種常規的做法是使用狀態機+事件回調的方式完成。

static int __do_handshark(struct bufferevent *bev)
{
    int res = -1;
    int fd = bufferevent_getfd(bev);
    struct zmtp_greeting gt = ZMTP_GREETING_INIT;

    char buffer[SIZE_LINE_NORMAL];
    struct zmtp_msg_shdr *phead = (struct zmtp_msg_shdr *)buffer;

    char pull_data[] = ZMTP_HANDSHAKE_PULL;
    struct zmtp_msg_shdr pull_head = {
        .flags = ZMTP_FLAGS_SCMD,
        .size = sizeof(pull_data) - 1,
    };

    /* Greeting */
    res = sdk_tcp_send_nbytes(fd, &gt, sizeof(struct zmtp_greeting), TIMEO);
    assert(0 == res);

    res = sdk_tcp_recv_nbytes(fd, &gt, sizeof(struct zmtp_greeting), TIMEO);
    assert(0 == res);

    printf("Greeting done...\n");

    /* Handshark */
    res = sdk_tcp_recv_nbytes(fd, phead, sizeof(struct zmtp_msg_shdr), TIMEO);
    assert(0 == res);
    assert(0x04 == phead->flags);

    res = sdk_tcp_recv_nbytes(fd, phead->data, phead->size, TIMEO);
    assert(0 == res);
    printf("Handsharke size: %d\n\n", phead->size);
    DSP_TOTAL(phead->data, phead->size);

    res = sdk_tcp_send_nbytes(fd, &pull_head, sizeof(struct zmtp_msg_shdr), TIMEO);
    assert(0 == res);

    res = sdk_tcp_send_nbytes(fd, &pull_data, pull_head.size, TIMEO);
    assert(0 == res);
    printf("Handsharke done...\n");

    return 0;
}

上述其實可以看到,報文填充非常暴力,通過宏直接將握手信息全部填充進去了。

#define ZMTP_GREETING_INIT { \
    { 0xFF, 0, 0, 0, 0, 0, 0, 0, 1, 0x7F }, \
    { 3, 0 }, \
    { 'N', 'U', 'L', 'L', 0 }, \
    { 0 }, \
    { 0 } \
}

#define ZMTP_HANDSHAKE_PULL { \
    0x05, \
    'R', 'E', 'A', 'D', 'Y', \
    0x0b, \
    'S', 'o', 'c', 'k', 'e', 't', '-', 'T', 'y', 'p', 'e', \
    0x00, 0x00, 0x00, 0x04, \
    'P', 'U', 'L', 'L', '0'\
}

3.2 數據拉取

數據拉取過程,由於Message數據域是不定長的,所以我們通過狀態機的形式剖報文

void on_recv(struct bufferevent *bev, void *args)
{
    int res = 0;
    struct msg_ctx *mctx = (struct msg_ctx *)args;

    /* Et mode */
    while (1) {
        size_t length = evbuffer_get_length(bufferevent_get_input(bev));
        if (length == 0) {
            break;
        }
        printf("Evbuffer length: %u\n", length);

        switch (mctx->status) {
        case STATUS_MSG_HEAD:
            if (0 == __do_head_parser(bev, mctx)) {
                /* state transition */
                mctx->status = STATUS_MSG_BODY;
                printf("Head done, data: %u\n", mctx->size);
            }
            break;

        case STATUS_MSG_BODY:
            if (0 == __do_body_parser(bev, mctx)) {
                /* state transition */
                mctx->status = STATUS_MSG_HEAD;
                printf("Body done, data: %u\n", mctx->size);
            }
            break;

        default:
            assert(0);
            break;
        }
    }
    return;
}

Message頭部信息,我們主要需要區分是長消息、還是短消息;是獨立消息、還是組合消息。

enum {
    ZMTP_FLAGS_SCMD = 0x04,
    ZMTP_FLAGS_LCMD = 0x06,
    ZMTP_FLAGS_SMSG_MORE = 0x01,
    ZMTP_FLAGS_LMSG_MORE = 0x03,
    ZMTP_FLAGS_SMSG_LAST = 0x00,
    ZMTP_FLAGS_LMSG_LAST = 0x02,
};

static int __do_head_parser(struct bufferevent *bev, struct msg_ctx *mctx)
{
    if (mctx->flags == 0xFF) {
        bufferevent_read(bev, &mctx->flags, sizeof(u8));
        printf("Head flag: %x\n", mctx->flags);
    }

    if (mctx->size == 0x00) {
        size_t expect = 0;
        size_t length = evbuffer_get_length(bufferevent_get_input(bev));

        switch (mctx->flags) {
        case ZMTP_FLAGS_SMSG_MORE:
        case ZMTP_FLAGS_SMSG_LAST:
            expect = sizeof(u8);
            printf("Body short\n");
            break;

        case ZMTP_FLAGS_LMSG_MORE:
        case ZMTP_FLAGS_LMSG_LAST:
            expect = sizeof(u64);
            printf("Body long\n");
            break;

        default:
            assert(0);
            break;
        }

        if (length < expect) {
            printf("Retry\n");
            return RETRY;
        }
        size_t rlen = bufferevent_read(bev, &mctx->size, expect);
        assert(rlen == expect);
        if (expect == sizeof(u64)) {
            mctx->size = ntohll(mctx->size);
        }
        assert(mctx->size > 0);
    }
    return 0;
}

然後是數據域狀態下的數據讀取了,這個主要考慮緩衝消息到evbuffer中,消息收全了最後才調用__do_something__do_reset函數

static int __do_body_parser(struct bufferevent *bev, struct msg_ctx *mctx)
{
    char buffer[SIZE_LINE_LONG];

    size_t rmax = _MIN(sizeof(buffer), mctx->size - evbuffer_get_length(mctx->evbuf));
    size_t rlen = bufferevent_read(bev, buffer, rmax);

    int res = evbuffer_add(mctx->evbuf, buffer, rlen);
    assert(res == 0);

    if (evbuffer_get_length(mctx->evbuf) >= mctx->size) {
        printf("Body done, length: %u/%u\n",
             evbuffer_get_length(mctx->evbuf), mctx->size);
        __do_something(mctx);
        __do_reset(mctx);
        return 0;
    }
    printf("Retry\n");
    return RETRY;
}

static void __do_reset(struct msg_ctx *mctx)
{
    mctx->status = STATUS_MSG_HEAD;
    mctx->flags = 0xFF;
    mctx->size  = 0x00;
    evbuffer_drain(mctx->evbuf, evbuffer_get_length(mctx->evbuf));
}

static void __do_something(struct msg_ctx *mctx)
{
    printf("-- 0x%x\n", mctx->flags);
    printf("-- %d\n", mctx->size);

    while (evbuffer_get_length(mctx->evbuf) > 0) {
        char buffer[SIZE_LINE_LONG];
        ssize_t rlen = evbuffer_remove(mctx->evbuf, buffer, sizeof(buffer));
        printf("-- %s\n", buffer);
    }
}

3.3 運行結果

短消息的拉取:

./pullx 127.0.0.1:5555

Program start...
Greeting done...
Handsharke size: 26

0000  05 52 45 41 44 59 0b 53 - 6f 63 6b 65 74 2d 54 79         .READY.Socket-Ty
0010  70 65 00 00 00 04 50 55 - 53 48 ** ** ** ** ** **         pe....PUSH
Handsharke done...
Evbuffer length: 14
Head flag: 0
Body short
Head done, data: 12
Evbuffer length: 12
Body done, length: 12/12
-- 0x0
-- 12
-- Data-   -000
Body done, data: 0
Evbuffer length: 14
Head flag: 0
Body short
Head done, data: 12
Evbuffer length: 12
Body done, length: 12/12
-- 0x0
-- 12
-- Data-   -001
Body done, data: 0

長消息的拉取:

./pullx 127.0.0.1:5555
Program start...
Greeting done...
Handsharke size: 26

0000  05 52 45 41 44 59 0b 53 - 6f 63 6b 65 74 2d 54 79         .READY.Socket-Ty
0010  70 65 00 00 00 04 50 55 - 53 48 ** ** ** ** ** **         pe....PUSH
Handsharke done...
Evbuffer length: 1033
Head flag: 2
Body long
Head done, data: 1024
Evbuffer length: 1024
Body done, length: 1024/1024
-- 0x2
-- 1024
-- Data-   -000
Body done, data: 0
Evbuffer length: 1033
Head flag: 2
Body long
Head done, data: 1024
Evbuffer length: 1024
Body done, length: 1024/1024
-- 0x2
-- 1024
-- Data-   -001
Body done, data: 0
Evbuffer length: 1033
Head flag: 2
Body long
Head done, data: 1024
Evbuffer length: 1024
Body done, length: 1024/1024

4. 結論

    通過本次試驗,驗證了直接剖取zmtp方法的可行性;但是要到工程中實踐,還得思考幾個問題:

  1. push-pull協議簡單,但router-dealer、pub-sub模式、加密、認證協議的剖析會更加複雜;
  2. socket維護的問題,需要考慮斷線重連、重新握手的問題;
  3. 協議版本的兼容性;
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章