Java字节码指令列表

原文链接:https://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

Mnemonic Opcode Opcode (in binary) Other bytes [count]: [operand labels] Stack [before]→[after] Description
aaload 32 0011 0010 arrayref, index → value load onto the stack a reference from an array 栈顶的数组下标(index)、数组引用(arrayref)出栈,并根据这两个数值取出对应的引用型数组元素值(value)进栈。
aastore 53 0101 0011 arrayref, index, value → store into a reference in an array 栈顶的引用型数值(value)、数组下标(index)、数组引用(arrayref)出栈,将数值存入对应的数组元素中。
aconst_null 1 0000 0001 → null 将null对象引用压入栈
aload 19 0001 1001 1: index → objectref 将位置为#index的局部变量中引用类型数据压栈
aload_0 2a 0010 1010 → objectref 将位置为0的局部变量中引用类型数据压栈
aload_1 2b 0010 1011 → objectref 将位置为1的局部变量中引用类型数据压栈
aload_2 2c 0010 1100 → objectref 将位置为2的局部变量中引用类型数据压栈
aload_3 2d 0010 1101 → objectref 将位置为3的局部变量中引用类型数据压栈
anewarray bd 1011 1101 2: indexbyte1, indexbyte2 count → arrayref create a new array of references of length count and component type identified by the class reference index (indexbyte1 << 8 + indexbyte2) in the constant pool 创建以栈顶值为长度,常量池中索引(indexbyte1 << 8 + indexbyte2)对应标识为组件类型的引用型数组,引用压栈
areturn b0 1011 0000 objectref → [empty] return a reference from a method 从方法中返回一个对象的引用(弹出栈顶元素) 如果当前方法是synchronized方法,并且当前线程不是改方法的锁的拥有者,会抛出 IllegalMonitorStateException。(未验证)
arraylength be 1011 1110 arrayref → length get the length of an array
astore 3a 0011 1010 1: index objectref → 弹出栈顶引用型元素存入位置为#index的局部变量中
astore_0 4b 0100 1011 objectref → 弹出栈顶引用型元素存入位置为0的局部变量中
astore_1 4c 0100 1100 objectref → 弹出栈顶引用型元素存入位置为1的局部变量中
astore_2 4d 0100 1101 objectref → 弹出栈顶引用型元素存入位置为2的局部变量中
astore_3 4e 0100 1110 objectref → 弹出栈顶引用型元素存入位置为3的局部变量中
athrow bf 1011 1111 objectref → [empty], objectref throws an error or exception (notice that the rest of the stack is cleared, leaving only a reference to the Throwable)
baload 33 0011 0011 arrayref, index → value load a byte or Boolean value from an array
bastore 54 0101 0100 arrayref, index, value → store a byte or Boolean value into an array
bipush 10 0001 0000 1: byte → value 将byte类型的数转换为int类型的数,然后压入栈
breakpoint ca 1100 1010 reserved for breakpoints in Java debuggers; should not appear in any class file
caload 34 0011 0100 arrayref, index → value load a char from an array
castore 55 0101 0101 arrayref, index, value → store a char into an array
checkcast c0 1100 0000 2: indexbyte1, indexbyte2 objectref → objectref checks whether an objectref is of a certain type, the class reference of which is in the constant pool at index (indexbyte1 << 8 + indexbyte2)
d2f 90 1001 0000 value → result convert a double to a float
d2i 8e 1000 1110 value → result convert a double to an int
d2l 8f 1000 1111 value → result convert a double to a long
dadd 63 0110 0011 value1, value2 → result add two doubles
daload 31 0011 0001 arrayref, index → value load a double from an array
dastore 52 0101 0010 arrayref, index, value → store a double into an array 栈顶的double型数值(value)、数组下标(index)、数组引用(arrayref)出栈,将数值存入对应的数组元素中。
dcmpg 98 1001 1000 value1, value2 → result compare two doubles
dcmpl 97 1001 0111 value1, value2 → result compare two doubles
dconst_0 0e 0000 1110 → 0.0 push the constant 0.0 (a double) onto the stack
dconst_1 0f 0000 1111 → 1.0 push the constant 1.0 (a double) onto the stack
ddiv 6f 0110 1111 value1, value2 → result divide two doubles
dload 18 0001 1000 1: index → value load a double value from a local variable #index
dload_0 26 0010 0110 → value load a double from local variable 0
dload_1 27 0010 0111 → value load a double from local variable 1
dload_2 28 0010 1000 → value load a double from local variable 2
dload_3 29 0010 1001 → value load a double from local variable 3
dmul 6b 0110 1011 value1, value2 → result multiply two doubles
dneg 77 0111 0111 value → result negate a double
drem 73 0111 0011 value1, value2 → result get the remainder from a division between two doubles
dreturn af 1010 1111 value → [empty] return a double from a method
dstore 39 0011 1001 1: index value → store a double value into a local variable #index 弹出栈顶double型数值存入第index个局部变量
dstore_0 47 0100 0111 value → store a double into local variable 0 弹出栈顶double型数值存入第1个局部变量
dstore_1 48 0100 1000 value → store a double into local variable 1 弹出栈顶double型数值存入第2个局部变量
dstore_2 49 0100 1001 value → store a double into local variable 2 弹出栈顶double型数值存入第3个局部变量
dstore_3 4a 0100 1010 value → store a double into local variable 3 弹出栈顶double型数值存入第4个局部变量
dsub 67 0110 0111 value1, value2 → result subtract a double from another
dup 59 0101 1001 value → value, value 复制栈顶部的值,随后压栈
dup_x1 5a 0101 1010 value2, value1 → value1, value2, value1 insert a copy of the top value into the stack two values from the top. value1 and value2 must not be of the type double or long.
dup_x2 5b 0101 1011 value3, value2, value1 → value1, value3, value2, value1 insert a copy of the top value into the stack two (if value2 is double or long it takes up the entry of value3, too) or three values (if value2 is neither double nor long) from the top
dup2 5c 0101 1100 {value2, value1} → {value2, value1}, {value2, value1} duplicate top two stack words (two values, if value1 is not double nor long; a single value, if value1 is double or long)
dup2_x1 5d 0101 1101 value3, {value2, value1} → {value2, value1}, value3, {value2, value1} duplicate two words and insert beneath third word (see explanation above)
dup2_x2 5e 0101 1110 {value4, value3}, {value2, value1} → {value2, value1}, {value4, value3}, {value2, value1} duplicate two words and insert beneath fourth word
f2d 8d 1000 1101 value → result convert a float to a double
f2i 8b 1000 1011 value → result convert a float to an int
f2l 8c 1000 1100 value → result convert a float to a long
fadd 62 0110 0010 value1, value2 → result 从栈顶弹出两个float型元素然后做加法,把结果压入栈
faload 30 0011 0000 arrayref, index → value load a float from an array
fastore 51 0101 0001 arrayref, index, value → store a float in an array 栈顶的float型数值(value)、数组下标(index)、数组引用(arrayref)出栈,将数值存入对应的数组元素中。
fcmpg 96 1001 0110 value1, value2 → result compare two floats
fcmpl 95 1001 0101 value1, value2 → result compare two floats
fconst_0 0b 0000 1011 → 0.0f float类型常量0.0f入栈
fconst_1 0c 0000 1100 → 1.0f float类型常量1.0f入栈
fconst_2 0d 0000 1101 → 2.0f float类型常量2.0f入栈
fdiv 6e 0110 1110 value1, value2 → result divide two floats
fload 17 0001 0111 1: index → value 从位置为#index的局部变量中取出float类型的元素压入栈
fload_0 22 0010 0010 → value 从位置为0的局部变量中取出float类型的元素压入栈
fload_1 23 0010 0011 → value 从位置为1的局部变量中取出float类型的元素压入栈
fload_2 24 0010 0100 → value 从位置为2的局部变量中取出float类型的元素压入栈
fload_3 25 0010 0101 → value 从位置为3的局部变量中取出float类型的元素压入栈
fmul 6a 0110 1010 value1, value2 → result multiply two floats
fneg 76 0111 0110 value → result negate a float
frem 72 0111 0010 value1, value2 → result get the remainder from a division between two floats
freturn ae 1010 1110 value → [empty] return a float
fstore 38 0011 1000 1: index value → 弹出栈顶float类型元素存入位置为#index的局部变量中
fstore_0 43 0100 0011 value → 弹出栈顶float类型元素存入位置为0的局部变量中
fstore_1 44 0100 0100 value → 弹出栈顶float类型元素存入位置为1的局部变量中
fstore_2 45 0100 0101 value → 弹出栈顶float类型元素存入位置为2的局部变量中
fstore_3 46 0100 0110 value → 弹出栈顶float类型元素存入位置为3的局部变量中
fsub 66 0110 0110 value1, value2 → result subtract two floats
getfield b4 1011 0100 2: indexbyte1, indexbyte2 objectref → value get a field value of an object objectref, where the field is identified by field reference in the constant pool index (indexbyte1 << 8 + indexbyte2)
getstatic b2 1011 0010 2: indexbyte1, indexbyte2 → value get a static field value of a class, where the field is identified by field reference in the constant pool index (indexbyte1 << 8 + indexbyte2) 获取类的静态字段值,其中字段由常量池索引(indexbyte1 << 8 + indexbyte2)的字段引用标识,并将其值压入栈顶
goto a7 1010 0111 2: branchbyte1, branchbyte2 [no change] get a static field value of a class, where the field is identified by field reference in the constant pool index (indexbyte1 << 8 + indexbyte2) 转到branchoffset上的另一条指令(指令通过无符号字节branchbyte1 << 8 + branchbyte2寻址)
goto_w c8 1100 1000 4: branchbyte1, branchbyte2, branchbyte3, branchbyte4 [no change] goes to another instruction at branchoffset (signed int constructed from unsigned bytes branchbyte1 << 24 + branchbyte2 << 16 + branchbyte3 << 8 + branchbyte4)
i2b 91 1001 0001 value → result convert an int into a byte
i2c 92 1001 0010 value → result convert an int into a character
i2d 87 1000 0111 value → result convert an int into a double
i2f 86 1000 0110 value → result convert an int into a float
i2l 85 1000 0101 value → result convert an int into a long
i2s 93 1001 0011 value → result convert an int into a short
iadd 60 0110 0000 value1, value2 → result 从栈顶弹出两个元素然后做加法,把结果压入栈
iaload 2e 0010 1110 arrayref, index → value load an int from an array 栈顶的数组下标(index)、数组引用(arrayref)出栈,并根据这两个数值取出对应的int型数组元素值(value)进栈。
iand 7e 0111 1110 value1, value2 → result perform a bitwise AND on two integers
iastore 4f 0100 1111 arrayref, index, value → store an int into an array 栈顶的int型数值(value)、数组下标(index)、数组引用(arrayref)出栈,将数值存入对应的数组元素中。
iconst_m1 2 0000 0010 → -1 load the int value −1 onto the stack
iconst_0 3 0000 0011 → 0 将int值0压栈
iconst_1 4 0000 0100 → 1 将int值1压栈
iconst_2 5 0000 0101 → 2 将int值2压栈
iconst_3 6 0000 0110 → 3 将int值3压栈
iconst_4 7 0000 0111 → 4 将int值4压栈
iconst_5 8 0000 1000 → 5 将int值5压栈
idiv 6c 0110 1100 value1, value2 → result divide two integers
if_acmpeq a5 1010 0101 2: branchbyte1, branchbyte2 value1, value2 → if references are equal, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_acmpne a6 1010 0110 2: branchbyte1, branchbyte2 value1, value2 → if references are not equal, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2) 如果栈顶两个引用不相等,则跳转到branchoffset上的指令(位置branchbyte1 << 8 + branchbyte2)
if_icmpeq 9f 1001 1111 2: branchbyte1, branchbyte2 value1, value2 → if ints are equal, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_icmpge a2 1010 0010 2: branchbyte1, branchbyte2 value1, value2 → if value1 is greater than or equal to value2, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2) 比较栈顶两int(value1,value2栈顶元素)型数值大小,当value1 >= value2,则跳转到branchoffset处的指令(由无符号字节branchbyte1 << 8 + branchbyte2构造)
if_icmpgt a3 1010 0011 2: branchbyte1, branchbyte2 value1, value2 → if value1 is greater than value2, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_icmple a4 1010 0100 2: branchbyte1, branchbyte2 value1, value2 → if value1 is less than or equal to value2, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2) 比较栈顶两int(value1,value2栈顶元素)型数值大小,当value1 <= value2,则跳转到branchoffset处的指令(由无符号字节branchbyte1 << 8 + branchbyte2构造)
if_icmplt a1 1010 0001 2: branchbyte1, branchbyte2 value1, value2 → if value1 is less than value2, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_icmpne a0 1010 0000 2: branchbyte1, branchbyte2 value1, value2 → if ints are not equal, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifeq 99 1001 1001 2: branchbyte1, branchbyte2 value → if value is 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2) 当栈顶int型数值等于0时跳转
ifge 9c 1001 1100 2: branchbyte1, branchbyte2 value → if value is greater than or equal to 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifgt 9d 1001 1101 2: branchbyte1, branchbyte2 value → if value is greater than 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifle 9e 1001 1110 2: branchbyte1, branchbyte2 value → if value is less than or equal to 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
iflt 9b 1001 1011 2: branchbyte1, branchbyte2 value → if value is less than 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifne 9a 1001 1010 2: branchbyte1, branchbyte2 value → if value is not 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifnonnull c7 1100 0111 2: branchbyte1, branchbyte2 value → if value is not null, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifnull c6 1100 0110 2: branchbyte1, branchbyte2 value → if value is null, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
iinc 84 1000 0100 2: index, const [No change] increment local variable #index by signed byte const 局部变量#index增加指定的值
iload 15 0001 0101 1: index → value 从位置为#index的局部变量中取出元素int类型的值压入栈
iload_0 1a 0001 1010 → value 从位置为0的局部变量中取出元素int类型的值压入栈
iload_1 1b 0001 1011 → value 从位置为1的局部变量中取出元素int类型的值压入栈
iload_2 1c 0001 1100 → value 从位置为2的局部变量中取出元素int类型的值压入栈
iload_3 1d 0001 1101 → value 从位置为3的局部变量中取出元素int类型的值压入栈
impdep1 fe 1111 1110 reserved for implementation-dependent operations within debuggers; should not appear in any class file
impdep2 ff 1111 1111 reserved for implementation-dependent operations within debuggers; should not appear in any class file
imul 68 0110 1000 value1, value2 → result multiply two integers
ineg 74 0111 0100 value → result negate int
instanceof c1 1100 0001 2: indexbyte1, indexbyte2 objectref → result determines if an object objectref is of a given type, identified by class reference index in constant pool (indexbyte1 << 8 + indexbyte2)
invokedynamic ba 1011 1010 4: indexbyte1, indexbyte2, 0, 0 [arg1, [arg2 ...]] → result invokes a dynamic method and puts the result on the stack (might be void); the method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
invokeinterface b9 1011 1001 4: indexbyte1, indexbyte2, count, 0 objectref, [arg1, arg2, ...] → result invokes an interface method on object objectref and puts the result on the stack (might be void); the interface method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2) 调用对象objectref的接口方法并将结果放入堆栈(可能为void); 接口方法由常量池中的方法引用索引标识(indexbyte1 << 8 + indexbyte2)
invokespecial b7 1011 0111 2: indexbyte1, indexbyte2 objectref, [arg1, arg2, ...] → result invoke instance method on object objectref and puts the result on the stack (might be void); the method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
invokestatic b8 1011 1000 2: indexbyte1, indexbyte2 [arg1, arg2, ...] → result invoke a static method and puts the result on the stack (might be void); the method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2) 调用一个静态方法并把结果放到堆栈上(可能是void); 该方法由常量池中的方法引用索引标识(indexbyte1 << 8 + indexbyte2)
invokevirtual b6 1011 0110 2: indexbyte1, indexbyte2 objectref, [arg1, arg2, ...] → result invoke virtual method on object objectref and puts the result on the stack (might be void); the method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
ior 80 1000 0000 value1, value2 → result bitwise int OR
irem 70 0111 0000 value1, value2 → result logical int remainder
ireturn ac 1010 1100 value → [empty] 返回栈顶的int值
ishl 78 0111 1000 value1, value2 → result int shift left
ishr 7a 0111 1010 value1, value2 → result int arithmetic shift right
istore 36 0011 0110 1: index value → 弹出栈顶int元素存入位置为#index的局部变量中
istore_0 3b 0011 1011 value → 弹出栈顶int元素存入位置0的局部变量中
istore_1 3c 0011 1100 value → 弹出栈顶int元素存入位置1的局部变量中
istore_2 3d 0011 1101 value → 弹出栈顶int元素存入位置2的局部变量中
istore_3 3e 0011 1110 value → 弹出栈顶int元素存入位置3的局部变量中
isub 64 0110 0100 value1, value2 → result int subtract
iushr 7c 0111 1100 value1, value2 → result int logical shift right
ixor 82 1000 0010 value1, value2 → result int xor
jsr a8 1010 1000 2: branchbyte1, branchbyte2 → address jump to subroutine at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2) and place the return address on the stack
jsr_w c9 1100 1001 4: branchbyte1, branchbyte2, branchbyte3, branchbyte4 → address jump to subroutine at branchoffset (signed int constructed from unsigned bytes branchbyte1 << 24 + branchbyte2 << 16 + branchbyte3 << 8 + branchbyte4) and place the return address on the stack
l2d 8a 1000 1010 value → result convert a long to a double
l2f 89 1000 1001 value → result convert a long to a float
l2i 88 1000 1000 value → result convert a long to a int
ladd 61 0110 0001 value1, value2 → result add two longs
laload 2f 0010 1111 arrayref, index → value load a long from an array
land 7f 0111 1111 value1, value2 → result bitwise AND of two longs
lastore 50 0101 0000 arrayref, index, value → store a long to an array 栈顶的long型数值(value)、数组下标(index)、数组引用(arrayref)出栈,将数值存入对应的数组元素中。
lcmp 94 1001 0100 value1, value2 → result push 0 if the two longs are the same, 1 if value1 is greater than value2, -1 otherwise
lconst_0 9 0000 1001 → 0L long类型常量0L入栈
lconst_1 0a 0000 1010 → 1L long类型常量1L入栈
ldc 12 0001 0010 1: index(无符号8位数indexbyte) → value push a constant #index from a constant pool (String, int, float, Class, java.lang.invoke.MethodType, or java.lang.invoke.MethodHandle) onto the stack 从由index指向的常量池入口中取出值(可能是String int float等),然后将其压入栈
ldc_w 13 0001 0011 2: indexbyte1, indexbyte2(无符号16位数indexshort,wide index is constructed as indexbyte1 << 8 + indexbyte2) → value push a constant #index from a constant pool (String, int, float, Class, java.lang.invoke.MethodType, or java.lang.invoke.MethodHandle) onto the stack (wide index is constructed as indexbyte1 << 8 + indexbyte2) 从由indexbyte1 << 8 + indexbyte2指向的常量池入口中取值,然后将其压入栈
ldc2_w 14 0001 0100 2: indexbyte1, indexbyte2 → value push a constant #index from a constant pool (double or long) onto the stack (wide index is constructed as indexbyte1 << 8 + indexbyte2) 将indexbyte1 << 8 + indexbyte2指向的常量取出(8个字节),然后将其压入栈
ldiv 6d 0110 1101 value1, value2 → result divide two longs
lload 16 0001 0110 1: index → value 从位置为#index和#index+1的局部变量中取出long类型元素压入栈
lload_0 1e 0001 1110 → value 从位置为0,1的局部变量中取出long类型元素压入栈
lload_1 1f 0001 1111 → value 从位置为1,2的局部变量中取出long类型元素压入栈
lload_2 20 0010 0000 → value 从位置为2,3的局部变量中取出long类型元素压入栈
lload_3 21 0010 0001 → value 从位置为3,4的局部变量中取出long类型元素压入栈
lmul 69 0110 1001 value1, value2 → result multiply two longs
lneg 75 0111 0101 value → result negate a long
lookupswitch ab 1010 1011 8+: <0–3 bytes padding>, defaultbyte1, defaultbyte2, defaultbyte3, defaultbyte4, npairs1, npairs2, npairs3, npairs4, match-offset pairs... key → a target address is looked up from a table using a key and execution continues from the instruction at that address
lor 81 1000 0001 value1, value2 → result bitwise OR of two longs
lrem 71 0111 0001 value1, value2 → result remainder of division of two longs
lreturn ad 1010 1101 value → [empty] return a long value
lshl 79 0111 1001 value1, value2 → result bitwise shift left of a long value1 by int value2 positions
lshr 7b 0111 1011 value1, value2 → result bitwise shift right of a long value1 by int value2 positions
lstore 37 0011 0111 1: index value → store a long value in a local variable #index 弹出栈顶long型元素存入位置为#index的局部变量中(但是每个Solt4个字节,所以这个会跨两个变量,其他的指令类似占据#index和#index+1号变量)
lstore_0 3f 0011 1111 value → 弹出栈顶long型元素存入位置为0,1的局部变量表中
lstore_1 40 0100 0000 value → 弹出栈顶long型元素存入位置为1,2的局部变量表中
lstore_2 41 0100 0001 value → 弹出栈顶long型元素存入位置为2,3的局部变量表中
lstore_3 42 0100 0010 value → 弹出栈顶long型元素存入位置为3,4的局部变量表中
lsub 65 0110 0101 value1, value2 → result subtract two longs
lushr 7d 0111 1101 value1, value2 → result bitwise shift right of a long value1 by int value2 positions, unsigned
lxor 83 1000 0011 value1, value2 → result bitwise XOR of two longs
monitorenter c2 1100 0010 objectref → enter monitor for object ("grab the lock" – start of synchronized() section)
monitorexit c3 1100 0011 objectref → exit monitor for object ("release the lock" – end of synchronized() section)
multianewarray c5 1100 0101 3: indexbyte1, indexbyte2, dimensions count1, [count2,...] → arrayref create a new array of dimensions dimensions of type identified by class reference in constant pool index (indexbyte1 << 8 + indexbyte2); the sizes of each dimension is identified by count1, [count2, etc.]
new bb 1011 1011 2: indexbyte1, indexbyte2 → objectref create new object of type identified by class reference in constant pool index (indexbyte1 << 8 + indexbyte2) 创建索引号为(indexbyte1 << 8 + indexbyte2)类引用标识的对象,并将引用压栈
newarray bc 1011 1100 1: atype count → arrayref create new array with count elements of primitive type identified by atype
nop 0 0000 0000 [No change] perform no operation
pop 57 0101 0111 value → discard the top value on the stack
pop2 58 0101 1000 {value2, value1} → discard the top two values on the stack (or one value, if it is a double or long)
putfield b5 1011 0101 2: indexbyte1, indexbyte2 objectref, value → set field to value in an object objectref, where the field is identified by a field reference index in constant pool (indexbyte1 << 8 + indexbyte2)
putstatic b3 1011 0011 2: indexbyte1, indexbyte2 value → set static field to value in a class, where the field is identified by a field reference index in constant pool (indexbyte1 << 8 + indexbyte2) 设置类中值静态字段,字段由常量池中的字段引用索引(indexbyte1 << 8 + indexbyte2)标识
ret a9 1010 1001 1: index [No change] continue execution from address taken from a local variable #index (the asymmetry with jsr is intentional)
return b1 1011 0001 → [empty] return void from method 当前方法返回void
saload 35 0011 0101 arrayref, index → value load short from array
sastore 56 0101 0110 arrayref, index, value → store short to array
sipush 11 0001 0001 2: byte1, byte2 → value 将一个短整型值作为整数值压栈
swap 5f 0101 1111 value2, value1 → value1, value2 swaps two top words on the stack (note that value1 and value2 must not be double or long)
tableswitch aa 1010 1010 16+: [0–3 bytes padding], defaultbyte1, defaultbyte2, defaultbyte3, defaultbyte4, lowbyte1, lowbyte2, lowbyte3, lowbyte4, highbyte1, highbyte2, highbyte3, highbyte4, jump offsets... index → continue execution from an address in the table at offset index
wide c4 1100 0100 3/5: opcode, indexbyte1, indexbyte2 [same as for corresponding instructions] execute opcode, where opcode is either iload, fload, aload, lload, dload, istore, fstore, astore, lstore, dstore, or ret, but assume the index is 16 bit; or execute iinc, where the index is 16 bits and the constant to increment by is a signed 16 bit short
or
(no name) cb-fd these values are currently unassigned for opcodes and are reserved for future use
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章