Android P zygote 啓動過程

Android P zygote 啓動過程

Zygote 概述

在Android系統中,DVM,ART應用程序進程以及運行系統的關鍵服務System_server 進程都是由Zygote進程來創建的。我們將其稱之爲孵化器。它通過fork的形式創建應用程序進程和system_server 進程。由於zygote進程在啓動的時候會創建DVM或者ART,因此通過fork而創建的應用程序進程或者system_server進程可以在內部獲得一個dvm或者art的實例副本,不需要單獨爲每一個進程創建dvm或者art。

我們知道zygote進程是在init進程裏面啓動的,起初zygote進程的名字並不是叫做zygote,而是叫做app_process,這個名稱是在Android.mk文件裏面定義的,zygote進程其啓動之後,Linux系統下的pctrl系統會調用app_process,將其名稱換成了zygote。

Zygote啓動腳本

在init.rc文件中採用import的方式引入zygote腳本。而zygote啓動腳本都是通過Android初始化語言(Android Init Language)進行編寫的。

import的位置:

android-9.0.0_r3/system/core/rootdir/init.rc
11 import /init.usb.configfs.rc
12 import /init.${ro.zygote}.rc   ->根據系統屬性 ro.zygote 進行定性

從上面的import語句,我們知道在啓動zygote的時候,系統屬性服務是已經啓動起來了。

爲什麼要通過 系統屬性 ro.zygote 來進行定位zygote啓動文件呢,因爲從Android 5.0 開始,Android 系統開始支持64位程序。Zygote 也就會有32位和64位的區別。所以利用系統屬性 ro.zygote 來進行控制使用不同的腳本。ro.zygote 屬性值有如下四種:

init.zygote32
init.zygote32_64
init.zygote64
init.zygote64_32

由此可以看出代碼中會存在如下幾個zygote文件:

/android-9.0.0_r3/system/core/rootdir/
init.zygote32.rc	H A D	12-一月-2019	511
init.zygote32_64.rc	H A D	12-一月-2019	853
init.zygote64.rc	H A D	12-一月-2019	513
init.zygote64_32.rc	H A D	12-一月-2019	875

比如我自己編譯的aosp代碼的 ro.zygote 的值爲:

generic_x86_64:/ $ getprop ro.zygote                                                       zygote64_32

Android 初始化語音的service類型語句格式如下:

service []

init.zygote32.rc

表示支持純32位程序,文件內容如下:

service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server
    class main
    priority -20
    user root
    group root readproc reserved_disk
    socket zygote stream 660 root system
    onrestart write /sys/android_power/request_state wake
    onrestart write /sys/power/state on
    onrestart restart audioserver
    onrestart restart cameraserver
    onrestart restart media
    onrestart restart netd
    onrestart restart wificond
    writepid /dev/cpuset/foreground/tasks

根據Service類型語句的格式,可以得知Zygote進程名稱爲zygote,執行程序爲app_process ,class name爲main。當zygote服務重啓的時候,會重啓 audioserver,cameraserver,media,netd,wificond

init.zygote32_64.rc

表示既支持32位應用程序,也支持64位應用程序。其內容如下:

service zygote /system/bin/app_process32 -Xzygote /system/bin --zygote --start-system-server --socket-name=zygote
    class main
    priority -20
    user root
    group root readproc reserved_disk
    socket zygote stream 660 root system
    onrestart write /sys/android_power/request_state wake
    onrestart write /sys/power/state on
    onrestart restart audioserver
    onrestart restart cameraserver
    onrestart restart media
    onrestart restart netd
    onrestart restart wificond
    writepid /dev/cpuset/foreground/tasks

service zygote_secondary /system/bin/app_process64 -Xzygote /system/bin --zygote --socket-name=zygote_secondary
    class main
    priority -20
    user root
    group root readproc reserved_disk
    socket zygote_secondary stream 660 root system
    onrestart restart zygote
    writepid /dev/cpuset/foreground/tasks

這段代碼中有兩個service,則表明會啓動兩個zygote進程,一個爲zygote 執行程序爲 app_process32,作爲主模式。另一個 zygote_secondary 執行的主程序爲 app_process64 ,作爲從/輔模式。

init.zygote64.rc

service zygote /system/bin/app_process64 -Xzygote /system/bin --zygote --start-system-server
    class main
    priority -20
    user root
    group root readproc reserved_disk
    socket zygote stream 660 root system
    onrestart write /sys/android_power/request_state wake
    onrestart write /sys/power/state on
    onrestart restart audioserver
    onrestart restart cameraserver
    onrestart restart media
    onrestart restart netd
    onrestart restart wificond
    writepid /dev/cpuset/foreground/tasks

init.zygote64_32.rc

service zygote /system/bin/app_process64 -Xzygote /system/bin --zygote --start-system-server --socket-name=zygote
    class main
    priority -20
    user root
    group root readproc reserved_disk
    socket zygote stream 660 root system
    onrestart write /sys/android_power/request_state wake
    onrestart write /sys/power/state on
    onrestart restart audioserver
    onrestart restart cameraserver
    onrestart restart media
    onrestart restart netd
    onrestart restart wificond
    writepid /dev/cpuset/foreground/tasks

service zygote_secondary /system/bin/app_process32 -Xzygote /system/bin --zygote --socket-name=zygote_secondary --enable-lazy-preload
    class main
    priority -20
    user root
    group root readproc reserved_disk
    socket zygote_secondary stream 660 root system
    onrestart restart zygote
    writepid /dev/cpuset/foreground/tasks

Zygote進程的啓動過程

從上面的service 的class我們知道,當在init進程啓動class 爲 main 的service的時候,就會啓動zygote進程了。

而zygote進程其實際上是執行 app_process64/app_process32 的main函數。其最終是執行:frameworks/base/cmds/app_process/app_main.cpp 的main函數。

android-9.0.0_r3/frameworks/base/cmds/app_process/app_main.cpp
179  #if defined(__LP64__)
180  static const char ABI_LIST_PROPERTY[] = "ro.product.cpu.abilist64";
181  static const char ZYGOTE_NICE_NAME[] = "zygote64";
182  #else
183  static const char ABI_LIST_PROPERTY[] = "ro.product.cpu.abilist32";
184  static const char ZYGOTE_NICE_NAME[] = "zygote";
185  #endif
186  
187  int main(int argc, char* const argv[])
...
278      while (i < argc) {
279          const char* arg = argv[i++];
280          if (strcmp(arg, "--zygote") == 0) {   //1
281              zygote = true;
282              niceName = ZYGOTE_NICE_NAME;
283          } else if (strcmp(arg, "--start-system-server") == 0) {  //2
284              startSystemServer = true;
285          } else if (strcmp(arg, "--application") == 0) {
286              application = true;
287          } else if (strncmp(arg, "--nice-name=", 12) == 0) {
288              niceName.setTo(arg + 12);
289          } else if (strncmp(arg, "--", 2) != 0) {
290              className.setTo(arg);
291              break;
292          } else {
293              --i;
294              break;
295          }
296      }
...
323          if (startSystemServer) {  //3
324              args.add(String8("start-system-server"));
325          }
...
345      if (!niceName.isEmpty()) {
346          runtime.setArgv0(niceName.string(), true /* setProcName */);
			 //調用 AndroidRuntime.cpp 的 start 函數。
347      }
348  
349      if (zygote) {  //4
350          runtime.start("com.android.internal.os.ZygoteInit", args, zygote);
351      } else if (className) {
352          runtime.start("com.android.internal.os.RuntimeInit", args, zygote);
353      } else {
354          fprintf(stderr, "Error: no class name or --zygote supplied.\n");
355          app_usage();
356          LOG_ALWAYS_FATAL("app_process: no class name or --zygote supplied.");
357      }


zygote都是通過fork自身來孵化新的進程的,比如system_server , 應用程序等,都是通過zygote fork孵化而來,所以在zygote的子進程中,都是可以進入到app_main.cpp 的main函數中來的。因此main函數中爲了區分運行在哪個進程,對參數做了簡要的區分,在註釋1處判斷參數中是否包含了–zygote,如果包含了則說明main函數是運行在zygote進程中的,並且將 zygote 設置爲true。而註釋2處則爲了標明需要啓動system_server,同時在註釋3處將 start-system-server 添加到args中,以傳遞給runtime。

android-9.0.0_r3/frameworks/base/core/jni/AndroidRuntime.cpp
void AndroidRuntime::start(const char* className, const Vector<String8>& options, bool zygote)
{
    ALOGD(">>>>>> START %s uid %d <<<<<<\n",
            className != NULL ? className : "(unknown)", getuid());

    static const String8 startSystemServer("start-system-server");

    /*
     * 'startSystemServer == true' means runtime is obsolete and not run from
     * init.rc anymore, so we print out the boot start event here.
     */
    for (size_t i = 0; i < options.size(); ++i) {
        if (options[i] == startSystemServer) {  //參照上面給runtime傳遞的start-system-server 參數
           /* track our progress through the boot sequence */
           const int LOG_BOOT_PROGRESS_START = 3000;
           LOG_EVENT_LONG(LOG_BOOT_PROGRESS_START,  ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
        }
    }
...
    /* start the virtual machine */
    JniInvocation jni_invocation;
    jni_invocation.Init(NULL);
    JNIEnv* env;
    if (startVm(&mJavaVM, &env, zygote) != 0) {   //啓動java虛擬機
        return;
    }
    onVmCreated(env);

    /*
     * Register android functions.
     */
    if (startReg(env) < 0) {    //爲java虛擬機註冊jni方法。
        ALOGE("Unable to register all android natives\n");
        return;
    }
...
    classNameStr = env->NewStringUTF(className);  
    //從上面的分析中可以知道此處的 className 爲com.android.internal.os.ZygoteInit
    assert(classNameStr != NULL);
    env->SetObjectArrayElement(strArray, 0, classNameStr);

    for (size_t i = 0; i < options.size(); ++i) {
        jstring optionsStr = env->NewStringUTF(options.itemAt(i).string());
        assert(optionsStr != NULL);
        env->SetObjectArrayElement(strArray, i + 1, optionsStr);   
        //將傳遞過來的參數全部再次組裝以傳遞爲java框架層
    }

    /*
     * Start VM.  This thread becomes the main thread of the VM, and will
     * not return until the VM exits.
     */
    char* slashClassName = toSlashClassName(className != NULL ? className : "");
    //對className 進行重新組裝,將classname中的 "." 換成 "/"
    jclass startClass = env->FindClass(slashClassName);
    // 通過 JNIEnv 找到對應的class。
    if (startClass == NULL) {
        ALOGE("JavaVM unable to locate class '%s'\n", slashClassName);
        /* keep going */
    } else {
        jmethodID startMeth = env->GetStaticMethodID(startClass, "main",
            "([Ljava/lang/String;)V");
        //找到 zygote 的main方法
        if (startMeth == NULL) {
            ALOGE("JavaVM unable to find main() in '%s'\n", className);
            /* keep going */
        } else {
            env->CallStaticVoidMethod(startClass, startMeth, strArray);
            //調用 ZygoteInit中的main方法。
#if 0
            if (env->ExceptionCheck())
                threadExitUncaughtException(env);
#endif
        }
    }
    free(slashClassName);

我們通過jni調用ZygoteInit的main方法後,Zygote便進入到了Java框架層裏面了。在此前是還沒有代碼進入到Java框架層的。換一個說法是zygote開創了java框架層。

android-9.0.0_r3/frameworks/base/core/java/com/android/internal/os/ZygoteInit.java
    public static void main(String argv[]) {
        ZygoteServer zygoteServer = new ZygoteServer();

        // Mark zygote start. This ensures that thread creation will throw
        // an error.
        ZygoteHooks.startZygoteNoThreadCreation();

        // Zygote goes into its own process group.
        try {
            Os.setpgid(0, 0);
        } catch (ErrnoException ex) {
            throw new RuntimeException("Failed to setpgid(0,0)", ex);
        }
...
            for (int i = 1; i < argv.length; i++) {
                if ("start-system-server".equals(argv[i])) {
                    startSystemServer = true;
                    //參數中有 start-system-server , 則需要啓動 system_server 
                } else if ("--enable-lazy-preload".equals(argv[i])) {
                    enableLazyPreload = true;
                } else if (argv[i].startsWith(ABI_LIST_ARG)) {
                    abiList = argv[i].substring(ABI_LIST_ARG.length());
                } else if (argv[i].startsWith(SOCKET_NAME_ARG)) {
                    socketName = argv[i].substring(SOCKET_NAME_ARG.length());
                    // SOCKET_NAME_ARG == "--socket-name=", 在啓動zygote的service裏面有這樣的參數: --socket-name=zygote  以及: --socket-name=zygote_secondary
                } else {
                    throw new RuntimeException("Unknown command line argument: " + argv[i]);
                }
            }
...
            zygoteServer.registerServerSocketFromEnv(socketName);
            //創建一個server斷的socket,此處如果是zygote線程,則 socketName 爲 zygote,如果爲 zygote_secondary 線程,則socketName爲zygote_secondary
            // In some configurations, we avoid preloading resources and classes eagerly.
            // In such cases, we will preload things prior to our first fork.
            if (!enableLazyPreload) {
                bootTimingsTraceLog.traceBegin("ZygotePreload");
                EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START,
                    SystemClock.uptimeMillis());
                preload(bootTimingsTraceLog);
                //預加載類和資源
                EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END,
                    SystemClock.uptimeMillis());
                bootTimingsTraceLog.traceEnd(); // ZygotePreload
            } else {
                Zygote.resetNicePriority();
            }
...
            if (startSystemServer) {
                Runnable r = forkSystemServer(abiList, socketName, zygoteServer);
                //啓動system_server 進程。

                // {@code r == null} in the parent (zygote) process, and {@code r != null} in the
                // child (system_server) process.
                if (r != null) {
                    r.run();
                    return;
                }
            }
...
            // The select loop returns early in the child process after a fork and
            // loops forever in the zygote.
            caller = zygoteServer.runSelectLoop(abiList);
            //等待着system_server 中的AMS通過socket連接zygote,以響應AMS要求創建應用程序的需求。

由上面的分析,大致可以得出ZygoteInit的main函數幹了如下幾個重要的事情:

  1. 創建server端的socket
  2. 預加載了類和資源
  3. 啓動了system_server
  4. 等待AMS請求

啓動system_server 進程

android-9.0.0_r3/frameworks/base/core/java/com/android/internal/os/ZygoteInit.java
    private static Runnable forkSystemServer(String abiList, String socketName,
            ZygoteServer zygoteServer) {
        long capabilities = posixCapabilitiesAsBits(
            OsConstants.CAP_IPC_LOCK,
            OsConstants.CAP_KILL,
            OsConstants.CAP_NET_ADMIN,
            OsConstants.CAP_NET_BIND_SERVICE,
            OsConstants.CAP_NET_BROADCAST,
            OsConstants.CAP_NET_RAW,
            OsConstants.CAP_SYS_MODULE,
            OsConstants.CAP_SYS_NICE,
            OsConstants.CAP_SYS_PTRACE,
            OsConstants.CAP_SYS_TIME,
            OsConstants.CAP_SYS_TTY_CONFIG,
            OsConstants.CAP_WAKE_ALARM,
            OsConstants.CAP_BLOCK_SUSPEND
        );
        /* Containers run without some capabilities, so drop any caps that are not available. */
        StructCapUserHeader header = new StructCapUserHeader(
                OsConstants._LINUX_CAPABILITY_VERSION_3, 0);
        StructCapUserData[] data;
        try {
            data = Os.capget(header);
        } catch (ErrnoException ex) {
            throw new RuntimeException("Failed to capget()", ex);
        }
        capabilities &= ((long) data[0].effective) | (((long) data[1].effective) << 32);

        /* Hardcoded command line to start the system server */
        String args[] = {
            "--setuid=1000",
            "--setgid=1000",
            "--setgroups=1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1018,1021,1023,1024,1032,1065,3001,3002,3003,3006,3007,3009,3010",
            "--capabilities=" + capabilities + "," + capabilities,
            "--nice-name=system_server",
            "--runtime-args",
            "--target-sdk-version=" + VMRuntime.SDK_VERSION_CUR_DEVELOPMENT,
            "com.android.server.SystemServer",
        };
        //啓動 system_server 的參數,設置uid,gid爲1000
        ZygoteConnection.Arguments parsedArgs = null;

        int pid;

        try {
            parsedArgs = new ZygoteConnection.Arguments(args);
            ZygoteConnection.applyDebuggerSystemProperty(parsedArgs);
            ZygoteConnection.applyInvokeWithSystemProperty(parsedArgs);

            boolean profileSystemServer = SystemProperties.getBoolean(
                    "dalvik.vm.profilesystemserver", false);
            if (profileSystemServer) {
                parsedArgs.runtimeFlags |= Zygote.PROFILE_SYSTEM_SERVER;
            }

            /* Request to fork the system server process */
            pid = Zygote.forkSystemServer(
                    parsedArgs.uid, parsedArgs.gid,
                    parsedArgs.gids,
                    parsedArgs.runtimeFlags,
                    null,
                    parsedArgs.permittedCapabilities,
                    parsedArgs.effectiveCapabilities);
        } catch (IllegalArgumentException ex) {
            throw new RuntimeException(ex);
        }

        /* For child process */
        if (pid == 0) {
            if (hasSecondZygote(abiList)) {
                waitForSecondaryZygote(socketName);
            }

            zygoteServer.closeServerSocket();
            return handleSystemServerProcess(parsedArgs);
            //fork 函數會返回兩個值,如果 pid 爲0,則標識當前執行的是子進程。handleSystemServerProcess 處理 system_server 該處理的事物。
        }

        return null;
    }

runSelectLoop

android-9.0.0_r3/frameworks/base/core/java/com/android/internal/os/ZygoteServer.java
    Runnable runSelectLoop(String abiList) {
        ArrayList<FileDescriptor> fds = new ArrayList<FileDescriptor>();
        ArrayList<ZygoteConnection> peers = new ArrayList<ZygoteConnection>();

        fds.add(mServerSocket.getFileDescriptor());
        //mServerSocket 則爲前面我們創建的zygote 服務端socket,通過getFileDescriptor主要得到socket的fd值,並將其添加到監聽列表fds中。
        peers.add(null);

        while (true) {
        //無限循環等待AMS請求,
            StructPollfd[] pollFds = new StructPollfd[fds.size()];
            for (int i = 0; i < pollFds.length; ++i) {
                pollFds[i] = new StructPollfd();
                pollFds[i].fd = fds.get(i);
                pollFds[i].events = (short) POLLIN;
            }
            try {
                Os.poll(pollFds, -1);
            } catch (ErrnoException ex) {
                throw new RuntimeException("poll failed", ex);
            }
            for (int i = pollFds.length - 1; i >= 0; --i) {
                if ((pollFds[i].revents & POLLIN) == 0) {
                    continue;
                }
				//代碼能夠運行到此處,說明zygote 與AMS之間已經有socket建立連接了。
                if (i == 0) {
                    ZygoteConnection newPeer = acceptCommandPeer(abiList);
                    //通過 acceptCommandPeer 函數,得到ZygoteConnection 進程與AMS進程建立的連接,並添加到socket連接列表 peers 中,注意,這裏表明這是剛剛纔建立socket連接,還並未有更實質的數據通信,實際的通信則應該是 i != 0 的情況。
                    peers.add(newPeer);
                    fds.add(newPeer.getFileDesciptor());
                } else {
                	//i不等於0的情況,說明AMS向zygote發送了一個創建應用程序的請求。通過processOneCommand 創建實際的應用程序。
                    try {
                        ZygoteConnection connection = peers.get(i);
                        final Runnable command = connection.processOneCommand(this);
                        //創建新的進程

                        if (mIsForkChild) {
                            // We're in the child. We should always have a command to run at this
                            // stage if processOneCommand hasn't called "exec".
                            if (command == null) {
                                throw new IllegalStateException("command == null");
                            }

                            return command;
                        } else {
                            // We're in the server - we should never have any commands to run.
                            if (command != null) {
                                throw new IllegalStateException("command != null");
                            }

                            // We don't know whether the remote side of the socket was closed or
                            // not until we attempt to read from it from processOneCommand. This shows up as
                            // a regular POLLIN event in our regular processing loop.
                            if (connection.isClosedByPeer()) {
                                connection.closeSocket();
                                peers.remove(i);
                                fds.remove(i);
                            }
                            //銷燬相關數據
                        }
                    } catch (Exception e) {
                        if (!mIsForkChild) {
                            // We're in the server so any exception here is one that has taken place
                            // pre-fork while processing commands or reading / writing from the
                            // control socket. Make a loud noise about any such exceptions so that
                            // we know exactly what failed and why.

                            Slog.e(TAG, "Exception executing zygote command: ", e);

                            // Make sure the socket is closed so that the other end knows immediately
                            // that something has gone wrong and doesn't time out waiting for a
                            // response.
                            ZygoteConnection conn = peers.remove(i);
                            conn.closeSocket();

                            fds.remove(i);
                        } else {
                            // We're in the child so any exception caught here has happened post
                            // fork and before we execute ActivityThread.main (or any other main()
                            // method). Log the details of the exception and bring down the process.
                            Log.e(TAG, "Caught post-fork exception in child process.", e);
                            throw e;
                        }
                    } finally {
                        // Reset the child flag, in the event that the child process is a child-
                        // zygote. The flag will not be consulted this loop pass after the Runnable
                        // is returned.
                        mIsForkChild = false;
                    }
                }
            }
        }
    }

此函數的內容不算多,邏輯也還算較清晰。

Zygote進程啓動的總結

zygote啓動做了大致如下幾個事務:

  1. 創建AndroidRuntime並調用其start方法,自動zygote進程。
  2. 創建java虛擬機,並且爲java虛擬機註冊JNI方法。
  3. 通過JNI調用ZygoteInit的main函數,進入到Zygote的Java框架層。
  4. 通過 registerServerSocketFromEnv 創建服務端的socket,並且通過 runSelectLoop 方法等待AMS的請求來創建新的應用程序
  5. 啓動System_server 進程。
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章