Android中的緩存策略--LruCache

一、Android中的緩存策略

一般來說,緩存策略主要包含緩存的添加、獲取和刪除這三類操作。如何添加和獲取緩存這個比較好理解,那麼爲什麼還要刪除緩存呢?這是因爲不管是內存緩存還是硬盤緩存,它們的緩存大小都是有限的。當緩存滿了之後,再想其添加緩存,這個時候就需要刪除一些舊的緩存並添加新的緩存。

因此LRU(Least Recently Used)緩存算法便應運而生,LRU是近期最少使用的算法,它的核心思想是當緩存滿時,會優先淘汰那些近期最少使用的緩存對象。採用LRU算法的緩存有兩種:LrhCache和DisLruCache分別用於實現內存緩存和硬盤緩存,其核心思想都是LRU緩存算法。

二、LruCache的使用

LruCache是Android 3.1所提供的一個緩存類,所以在Android中可以直接使用LruCache實現內存緩存。而DisLruCache目前在Android 還不是Android SDK的一部分,但Android官方文檔推薦使用該算法來實現硬盤緩存。

1.LruCache的介紹

LruCache是個泛型類,主要算法原理是把最近使用的對象用強引用(即我們平常使用的對象引用方式)存儲在 LinkedHashMap 中。當緩存滿時,把最近最少使用的對象從內存中移除,並提供了get和put方法來完成緩存的獲取和添加操作。

2.LruCache的使用

LruCache的使用非常簡單,我們就已圖片緩存爲例。

int maxMemory = (int) (Runtime.getRuntime().totalMemory()/1024);
int cacheSize = maxMemory/8;
mMemoryCache = new LruCache<String,Bitmap>(cacheSize){
    @Override
    protected int sizeOf(String key, Bitmap value) {
    return value.getRowBytes()*value.getHeight()/1024
    ;
}

①設置LruCache緩存的大小,一般爲當前進程可用容量的1/8。
②重寫sizeOf方法,計算出要緩存的每張圖片的大小。

注意:緩存的總容量和每個緩存對象的大小所用單位要一致。

三、LruCache的實現原理

LruCache的核心思想很好理解,就是要維護一個緩存對象列表,其中對象列表的排列方式是按照訪問順序實現的,即一直沒訪問的對象,將放在隊尾,即將被淘汰。而最近訪問的對象將放在隊頭,最後被淘汰。

如下圖所示:
這裏寫圖片描述

那麼這個隊列到底是由誰來維護的,前面已經介紹了是由LinkedHashMap來維護。而LinkedHashMap是由數組+雙向鏈表的數據結構來實現的。其中雙向鏈表的結構可以實現訪問順序和插入順序,使得LinkedHashMap中的對按照一定順序排列起來。

通過下面構造函數來指定LinkedHashMap中雙向鏈表的結構是訪問順序還是插入順序。

public LinkedHashMap(int initialCapacity,float loadFactor,boolean accessOrder) {
        super(initialCapacity, loadFactor);
        this.accessOrder = accessOrder;
}

其中accessOrder設置爲true則爲訪問順序,爲false,則爲插入順序。

以具體例子解釋: 當設置爲true時

public static final void main(String[] args) {
    LinkedHashMap<Integer, Integer> map = new LinkedHashMap<>(0, 0.75f, true);
    map.put(0, 0);
    map.put(1, 1);
    map.put(2, 2);
    map.put(3, 3);
    map.put(4, 4);
    map.put(5, 5);
    map.put(6, 6);
    map.get(1);
    map.get(2);
    for (Map.Entry<Integer, Integer> entry : map.entrySet())
    {
        System.out.println(entry.getKey() + ":" + entry.getValue());
    }
}

輸出結果:0:0 3:3 4:4 5:5 6:6 1:1 2:2

即最近訪問的最後輸出,那麼這就正好滿足的LRU緩存算法的思想。可見LruCache巧妙實現,就是利用了LinkedHashMap的這種數據結構。

下面我們在LruCache源碼中具體看看,怎麼應用LinkedHashMap來實現緩存的添加,獲得和刪除的。

public LruCache(int maxSize) {
    if (maxSize <= 0) {
        throw new IllegalArgumentException("maxSize <= 0");
    }
    this.maxSize = maxSize;
    this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
}

從LruCache的構造函數中可以看到正是用了LinkedHashMap的訪問順序。

put()方法:

public final V put(K key, V value) {
    //不可爲空,否則拋出異常
    if (key == null || value == null) {
        throw new NullPointerException("key == null || value== null");
    }
    V previous;
    synchronized (this) {
        //插入的緩存對象值加1
        putCount++;
        //增加已有緩存的大小
        size += safeSizeOf(key, value);
        //向map中加入緩存對象
        previous = map.put(key, value);
        //如果已有緩存對象,則緩存大小恢復到之前
        if (previous != null) {
            size -= safeSizeOf(key, previous);
        }
    }
    //entryRemoved()是個空方法,可以自行實現
    if (previous != null) {
        entryRemoved(false, key, previous, value);
    }
    //調整緩存大小(關鍵方法)
    trimToSize(maxSize);
    return previous;
}

可以看到put()方法並沒有什麼難點,重要的就是在添加過緩存對象後,調用trimToSize()方法,來判斷緩存是否已滿,如果滿了就要刪除近期最少使用的算法。

trimToSize()方法:

public void trimToSize(int maxSize) {
    //死循環
    while (true) {
        K key;
        V value;
        synchronized (this) {
            //如果map爲空並且緩存size不等於0或者緩存size小於0,拋出異常
            if (size < 0 || (map.isEmpty() && size != 0)) {
                throw new IllegalStateException(getClass().getName()+ ".sizeOf() is reporting  inconsistent results!");
            }
            //如果緩存大小size小於最大緩存,或者map爲空,不需要再刪除緩存對象,跳出循環
            if (size <= maxSize || map.isEmpty()) {
                break;
            }
            //迭代器獲取第一個對象,即隊尾的元素,近期最少訪問的元素
            Map.Entry<K, V> toEvict = map.entrySet().iterator().next();
            key = toEvict.getKey();
            value = toEvict.getValue();
            //刪除該對象,並更新緩存大小
            map.remove(key);
            size -= safeSizeOf(key, value);
            evictionCount++;
        }
        entryRemoved(true, key, value, null);
    }
}

trimToSize()方法不斷地刪除LinkedHashMap中隊尾的元素,即近期最少訪問的,直到緩存大小小於最大值。

當調用LruCache的get()方法獲取集合中的緩存對象時,就代表訪問了一次該元素,將會更新隊列,保持整個隊列是按照訪問順序排序。這個更新過程就是在LinkedHashMap中的get()方法中完成的。

先看LruCache的get()方法:

public final V get(K key) {
    //key爲空拋出異常
    if (key == null) {
        throw new NullPointerException("key == null");
    }
    V mapValue;
    synchronized (this) {
        //獲取對應的緩存對象
        //get()方法會實現將訪問的元素更新到隊列頭部的功能
        mapValue = map.get(key);
        if (mapValue != null) {
        hitCount++;
        return mapValue;
    }
    missCount++;
}

其中LinkedHashMap的get()方法如下:

public V get(Object key) {
    LinkedHashMapEntry<K,V> e = (LinkedHashMapEntry<K,V>)getEntry(key);
    if (e == null)
        return null;
    //實現排序的關鍵方法
    e.recordAccess(this);
    return e.value;
}

調用recordAccess()方法如下:

void recordAccess(HashMap<K,V> m) {
    LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
    //判斷是否是訪問排序
    if (lm.accessOrder) {
        lm.modCount++;
        //刪除此元素
        remove();
        //將此元素移動到隊列的頭部
        addBefore(lm.header);
    }
}

由此可見LruCache中維護了一個集合LinkedHashMap,該LinkedHashMap是以訪問順序排序的。當調用put()方法時,就會在結合中添加元素,並調用trimToSize()判斷緩存是否已滿,如果滿了就用LinkedHashMap的迭代器刪除隊尾元素,即近期最少訪問的元素。當調用get()方法訪問緩存對象時,就會調用LinkedHashMap的get()方法獲得對應集合元素,同時會更新該元素到隊頭。

發佈了63 篇原創文章 · 獲贊 6 · 訪問量 3萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章