ConcurrentHashMap的JDK1.7和JDK1.8的實現

ConcurrentHashMap的由來

看過Hashtable源碼的我們都知道Hashtable的線程安全是採用在每個方法來添加了synchronized關鍵字來修飾,即Hashtable是針對整個table的鎖定,這樣就導致HashTable容器在競爭激烈的併發環境下表現出效率低下。

效率低下的原因說的更詳細點:是因爲所有訪問HashTable的線程都必須競爭同一把鎖。當一個線程訪問HashTable的同步方法時,其他線程訪問HashTable的同步方法時,可能會進入阻塞或輪詢狀態。如線程1使用put進行添加元素,線程2不但不能使用put方法添加元素,並且也不能使用get方法來獲取元素,所以競爭越激烈效率越低。

基於Hashtable的缺點,人們就開始思考,假如容器裏有多把鎖,每一把鎖用於鎖容器其中一部分數據,那麼當多線程訪問容器裏不同數據段的數據時,線程間就不會存在鎖競爭,從而可以有效的提高併發訪問效率呢??這就是我們的“鎖分離”技術,這也是ConcurrentHashMap實現的基礎。

ConcurrentHashMap使用的就是鎖分段技術,ConcurrentHashMap由多個Segment組成(Segment下包含很多Node,也就是我們的鍵值對了),每個Segment都有把鎖來實現線程安全,當一個線程佔用鎖訪問其中一個段數據的時候,其他段的數據也能被其他線程訪問。

JDK1.7 ConcurrentHashMap(支持併發)

ConcurrentHashMap的內部細分了若干個小的HashMap,稱之爲段(SEGMENT)。ConcurrentHashMap 是一個 Segment 數組,Segment 通過繼承 ReentrantLock 來進行加鎖,所以每次需要加鎖的操作鎖住的是一個 segment,這樣只要保證每個 Segment 是線程安全的,也就實現了全局的線程安全。


ConcurrentHashMap 有 16 個 Segments,所以理論上,最多可以同時支持 16 個線程併發寫,只要它們的操作分別分佈在不同的 Segment 上。這個值可以在初始化的時候設置爲其他值,但是一旦初始化以後,它是不可以擴容的。每個Segment內部更像是一個hashmap。

初始化

initialCapacity:初始容量,這個值指的是整個 ConcurrentHashMap 的初始容量,實際操作的時候需要平均分給每個 Segment。

loadFactor:負載因子,Segment 數組不可以擴容,所以這個負載因子是給每個 Segment 內部使用的。

public ConcurrentHashMap(int initialCapacity,
                         float loadFactor, int concurrencyLevel) {
    if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
        throw new IllegalArgumentException();
    if (concurrencyLevel > MAX_SEGMENTS)
        concurrencyLevel = MAX_SEGMENTS;
    // Find power-of-two sizes best matching arguments
    int sshift = 0;
    int ssize = 1;
    // 計算並行級別 ssize,因爲要保持並行級別是 2 的 n 次方
    while (ssize < concurrencyLevel) {
        ++sshift;
        ssize <<= 1;
    }
    // 我們這裏先不要那麼燒腦,用默認值,concurrencyLevel 爲 16,sshift 爲 4
    // 那麼計算出 segmentShift 爲 28,segmentMask 爲 15,後面會用到這兩個值
    this.segmentShift = 32 - sshift;
    this.segmentMask = ssize - 1;
 
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
 
    // initialCapacity 是設置整個 map 初始的大小,
    // 這裏根據 initialCapacity 計算 Segment 數組中每個位置可以分到的大小
    // 如 initialCapacity 爲 64,那麼每個 Segment 或稱之爲"槽"可以分到 4 個
    int c = initialCapacity / ssize;
    if (c * ssize < initialCapacity)
        ++c;
    // 默認 MIN_SEGMENT_TABLE_CAPACITY 是 2,這個值也是有講究的,因爲這樣的話,對於具體的槽上,
    // 插入一個元素不至於擴容,插入第二個的時候纔會擴容
    int cap = MIN_SEGMENT_TABLE_CAPACITY; 
    while (cap < c)
        cap <<= 1;
 
    // 創建 Segment 數組,
    // 並創建數組的第一個元素 segment[0]
    Segment<K,V> s0 =
        new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                         (HashEntry<K,V>[])new HashEntry[cap]);
    Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
    // 往數組寫入 segment[0]
    UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
    this.segments = ss;
}

初始化完成後,得到Segment數組。

  • Segment 數組長度爲 16,不可以擴容
  • Segment[i] 的默認大小爲 2,負載因子是 0.75,得出初始閾值爲 1.5,也就是以後插入第一個元素不會觸發擴容,插入第二個會進行第一次擴容
  • 這裏初始化了 segment[0],其他位置還是 null,至於爲什麼要初始化 segment[0],後面的代碼會介紹

put過程分析

public V put(K key, V value) {
    Segment<K,V> s;
    if (value == null)
        throw new NullPointerException();
    // 1. 計算 key 的 hash 值
    int hash = hash(key);
    // 2. 根據 hash 值找到 Segment 數組中的位置 j
    //    hash 是 32 位,無符號右移 segmentShift(28) 位,剩下低 4 位,
    //    然後和 segmentMask(15) 做一次與操作,也就是說 j 是 hash 值的最後 4 位,也就是槽的數組下標
    int j = (hash >>> segmentShift) & segmentMask;
    // 剛剛說了,初始化的時候初始化了 segment[0],但是其他位置還是 null,
    // ensureSegment(j) 對 segment[j] 進行初始化
    if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
         (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
        s = ensureSegment(j);
    // 3. 插入新值到 槽 s 中
    return s.put(key, hash, value, false);
}

根據hash值找到對應的Segment,然後就是Segment內部的put操作。

Segment 內部是由 數組+鏈表 組成的。 插入的位置是鏈表表頭!

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
    // 在往該 segment 寫入前,需要先獲取該 segment 的獨佔鎖
    //    先看主流程,後面還會具體介紹這部分內容
    HashEntry<K,V> node = tryLock() ? null :
        scanAndLockForPut(key, hash, value);
    V oldValue;
    try {
        // 這個是 segment 內部的數組
        HashEntry<K,V>[] tab = table;
        // 再利用 hash 值,求應該放置的數組下標
        int index = (tab.length - 1) & hash;
        // first 是數組該位置處的鏈表的表頭
        HashEntry<K,V> first = entryAt(tab, index);
 
        // 下面這串 for 循環雖然很長,不過也很好理解,想想該位置沒有任何元素和已經存在一個鏈表這兩種情況
        for (HashEntry<K,V> e = first;;) {
            if (e != null) {
                K k;
                if ((k = e.key) == key ||
                    (e.hash == hash && key.equals(k))) {
                    oldValue = e.value;
                    if (!onlyIfAbsent) {
                        // 覆蓋舊值
                        e.value = value;
                        ++modCount;
                    }
                    break;
                }
                // 繼續順着鏈表走
                e = e.next;
            }
            else {
                // node 到底是不是 null,這個要看獲取鎖的過程,不過和這裏都沒有關係。
                // 如果不爲 null,那就直接將它設置爲鏈表表頭;如果是null,初始化並設置爲鏈表表頭。
                if (node != null)
                    node.setNext(first);
                else
                    node = new HashEntry<K,V>(hash, key, value, first);
 
                int c = count + 1;
                // 如果超過了該 segment 的閾值,這個 segment 需要擴容
                if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                    rehash(node); // 擴容後面也會具體分析
                else
                    // 沒有達到閾值,將 node 放到數組 tab 的 index 位置,
                    // 其實就是將新的節點設置成原鏈表的表頭
                    setEntryAt(tab, index, node);
                ++modCount;
                count = c;
                oldValue = null;
                break;
            }
        }
    } finally {
        // 解鎖
        unlock();
    }
    return oldValue;
}

初始化槽:ensureSegment

ConcurrentHashMap 初始化的時候會初始化第一個槽 segment[0],對於其他槽來說,在插入第一個值的時候進行初始化。

需要考慮併發,因爲很可能會有多個線程同時進來初始化同一個槽 segment[k],不過只要有一個成功了就可以。

使用CAS併發操作

private Segment<K,V> ensureSegment(int k) {
    final Segment<K,V>[] ss = this.segments;
    long u = (k << SSHIFT) + SBASE; // raw offset
    Segment<K,V> seg;
    if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
        // 這裏看到爲什麼之前要初始化 segment[0] 了,
        // 使用當前 segment[0] 處的數組長度和負載因子來初始化 segment[k]
        // 爲什麼要用“當前”,因爲 segment[0] 可能早就擴容過了
        Segment<K,V> proto = ss[0];
        int cap = proto.table.length;
        float lf = proto.loadFactor;
        int threshold = (int)(cap * lf);
 
        // 初始化 segment[k] 內部的數組
        HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
            == null) { // 再次檢查一遍該槽是否被其他線程初始化了。
 
            Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
            // 使用 while 循環,內部用 CAS,當前線程成功設值或其他線程成功設值後,退出
            while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
                   == null) {
                if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
                    break;
            }
        }
    }
    return seg;
}

獲取寫入鎖: scanAndLockForPut

前面我們看到,在往某個 segment 中 put 的時候,首先會調用 node = tryLock() ? null : scanAndLockForPut(key, hash, value),也就是說先進行一次 tryLock() 快速獲取該 segment 的獨佔鎖,如果失敗,那麼進入到 scanAndLockForPut 這個方法來獲取鎖。

private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
    HashEntry<K,V> first = entryForHash(this, hash);
    HashEntry<K,V> e = first;
    HashEntry<K,V> node = null;
    int retries = -1; // negative while locating node
 
    // 循環獲取鎖
    while (!tryLock()) {
        HashEntry<K,V> f; // to recheck first below
        if (retries < 0) {
            if (e == null) {
                if (node == null) // speculatively create node
                    // 進到這裏說明數組該位置的鏈表是空的,沒有任何元素
                    // 當然,進到這裏的另一個原因是 tryLock() 失敗,所以該槽存在併發,不一定是該位置
                    node = new HashEntry<K,V>(hash, key, value, null);
                retries = 0;
            }
            else if (key.equals(e.key))
                retries = 0;
            else
                // 順着鏈表往下走
                e = e.next;
        }
        // 重試次數如果超過 MAX_SCAN_RETRIES(單核1多核64),那麼不搶了,進入到阻塞隊列等待鎖
        //    lock() 是阻塞方法,直到獲取鎖後返回
        else if (++retries > MAX_SCAN_RETRIES) {
            lock();
            break;
        }
        else if ((retries & 1) == 0 &&
                 // 這個時候是有大問題了,那就是有新的元素進到了鏈表,成爲了新的表頭
                 //     所以這邊的策略是,相當於重新走一遍這個 scanAndLockForPut 方法
                 (f = entryForHash(this, hash)) != first) {
            e = first = f; // re-traverse if entry changed
            retries = -1;
        }
    }
    return node;
}

這個方法有兩個出口,一個是 tryLock() 成功了,循環終止,另一個就是重試次數超過了 MAX_SCAN_RETRIES,進到 lock() 方法,此方法會阻塞等待,直到成功拿到獨佔鎖。

這個方法只做了一件事,就是獲取該 segment 的獨佔鎖,如果需要的話順便實例化了一下 node。

擴容:rehash

  • segment 數組不能擴容,擴容是 segment 數組某個位置內部的數組 HashEntry[] 進行擴容,擴容後,容量爲原來的 2 倍。
  • 觸發擴容的地方:put 的時候,如果判斷該值的插入會導致該 segment 的元素個數超過閾值,那麼先進行擴容,再插值。
  • 該方法不需要考慮併發,因爲到這裏的時候,是持有該 segment 的獨佔鎖的。
// 方法參數上的 node 是這次擴容後,需要添加到新的數組中的數據。
private void rehash(HashEntry<K,V> node) {
    HashEntry<K,V>[] oldTable = table;
    int oldCapacity = oldTable.length;
    // 2 倍
    int newCapacity = oldCapacity << 1;
    threshold = (int)(newCapacity * loadFactor);
    // 創建新數組
    HashEntry<K,V>[] newTable =
        (HashEntry<K,V>[]) new HashEntry[newCapacity];
    // 新的掩碼,如從 16 擴容到 32,那麼 sizeMask 爲 31,對應二進制 ‘000...00011111’
    int sizeMask = newCapacity - 1;
 
    // 遍歷原數組,老套路,將原數組位置 i 處的鏈表拆分到 新數組位置 i 和 i+oldCap 兩個位置
    for (int i = 0; i < oldCapacity ; i++) {
        // e 是鏈表的第一個元素
        HashEntry<K,V> e = oldTable[i];
        if (e != null) {
            HashEntry<K,V> next = e.next;
            // 計算應該放置在新數組中的位置,
            // 假設原數組長度爲 16,e 在 oldTable[3] 處,那麼 idx 只可能是 3 或者是 3 + 16 = 19
            int idx = e.hash & sizeMask;
            if (next == null)   // 該位置處只有一個元素,那比較好辦
                newTable[idx] = e;
            else { // Reuse consecutive sequence at same slot
                // e 是鏈表表頭
                HashEntry<K,V> lastRun = e;
                // idx 是當前鏈表的頭結點 e 的新位置
                int lastIdx = idx;
 
                // 下面這個 for 循環會找到一個 lastRun 節點,這個節點之後的所有元素是將要放到一起的
                for (HashEntry<K,V> last = next;
                     last != null;
                     last = last.next) {
                    int k = last.hash & sizeMask;
                    if (k != lastIdx) {
                        lastIdx = k;
                        lastRun = last;
                    }
                }
                // 將 lastRun 及其之後的所有節點組成的這個鏈表放到 lastIdx 這個位置
                newTable[lastIdx] = lastRun;
                // 下面的操作是處理 lastRun 之前的節點,
                //    這些節點可能分配在另一個鏈表中,也可能分配到上面的那個鏈表中
                for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                    V v = p.value;
                    int h = p.hash;
                    int k = h & sizeMask;
                    HashEntry<K,V> n = newTable[k];
                    newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                }
            }
        }
    }
    // 將新來的 node 放到新數組中剛剛的 兩個鏈表之一 的 頭部
    int nodeIndex = node.hash & sizeMask; // add the new node
    node.setNext(newTable[nodeIndex]);
    newTable[nodeIndex] = node;
    table = newTable;
}

仔細一看發現,如果沒有第一個 for 循環,也是可以工作的,但是,這個 for 循環下來,如果 lastRun 的後面還有比較多的節點,那麼這次就是值得的。因爲我們只需要克隆 lastRun 前面的節點,後面的一串節點跟着 lastRun 走就是了,不需要做任何操作。

get過程分析

  1. 計算 hash 值,找到 segment 數組中的具體位置
  2. 槽中也是一個數組,根據 hash 找到數組中具體的位置
  3. 到這裏是鏈表了,順着鏈表進行查找即可
  4. 注意:get操作是不加鎖的
public V get(Object key) {
    Segment<K,V> s; // manually integrate access methods to reduce overhead
    HashEntry<K,V>[] tab;
    // 1. hash 值
    int h = hash(key);
    long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
    // 2. 根據 hash 找到對應的 segment
    if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
        (tab = s.table) != null) {
        // 3. 找到segment 內部數組相應位置的鏈表,遍歷
        for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                 (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
             e != null; e = e.next) {
            K k;
            if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                return e.value;
        }
    }
    return null;
}

併發問題分析

 get 過程中是沒有加鎖的,那自然我們就需要去考慮併發問題。添加節點的操作 put 和刪除節點的操作 remove 都是要加 segment 上的獨佔鎖的,所以它們之間自然不會有問題,我們需要考慮的問題就是 get 的時候在同一個 segment 中發生了 put 或 remove 操作。

1. put 操作的線程安全性

  • 初始化Segment,使用了 CAS 來初始化 Segment 中的數組。
  • 添加節點到鏈表的操作是插入到表頭的,所以,如果這個時候 get 操作在鏈表遍歷的過程已經到了中間,是不會影響的。當然,另一個併發問題就是 get 操作在 put 之後,需要保證剛剛插入表頭的節點被讀取,這個依賴於 setEntryAt 方法中使用的 UNSAFE.putOrderedObject。
  • 擴容。擴容是新創建了數組,然後進行遷移數據,最後面將 newTable 設置給屬性 table。所以,如果 get 操作此時也在進行,那麼也沒關係,如果 get 先行,那麼就是在舊的 table 上做查詢操作;而 put 先行,那麼 put 操作的可見性保證就是 table 使用了 volatile 關鍵字。

2. remove 操作的線程安全性。

  • get 操作需要遍歷鏈表,但是 remove 操作會”破壞”鏈表。
  • 如果 remove 破壞的節點 get 操作已經過去了,那麼這裏不存在任何問題。
  • 如果 remove 先破壞了一個節點,分兩種情況考慮。 1、如果此節點是頭結點,那麼需要將頭結點的 next 設置爲數組該位置的元素,table 雖然使用了 volatile 修飾,但是 volatile 並不能提供數組內部操作的可見性保證所以源碼中使用了 UNSAFE 來操作數組,請看方法 setEntryAt。2、如果要刪除的節點不是頭結點,它會將要刪除節點的後繼節點接到前驅節點中,這裏的併發保證就是 next 屬性是 volatile 的。

JDK1.8 ConcurrentHashMap(支持併發)

Java8 ConcurrentHashMap結構基本上和Java8的HashMap一樣,不過保證線程安全性


與JDK1.7的區別

  1. 數據結構:取消了Segment分段鎖的數據結構,取而代之的是數組+鏈表+紅黑樹的結構。
  2. 保證線程安全機制:JDK1.7採用segment的分段鎖機制實現線程安全,其中segment繼承自ReentrantLock。JDK1.8採用CAS+Synchronized保證線程安全。
  3. 鎖的粒度:原來是對需要進行數據操作的Segment加鎖,現調整爲對每個數組元素加鎖(Node)。
  4. 定位結點的hash算法簡化,會帶來弊端:Hash衝突加劇。因此在鏈表節點數量大於8時,會將鏈表轉化爲紅黑樹進行存儲。
  5. 查詢時間複雜度:從原來的遍歷鏈表O(n),變成遍歷紅黑樹O(logN)。

初始化

public ConcurrentHashMap() {
}
public ConcurrentHashMap(int initialCapacity) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException();
    int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
               MAXIMUM_CAPACITY :
               tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
    this.sizeCtl = cap;
}

這個初始化方法通過提供初始容量,計算了 sizeCtl,sizeCtl = 【 (1.5 * initialCapacity + 1),然後向上取最近的 2 的 n 次方】。如 initialCapacity 爲 10,那麼得到 sizeCtl 爲 16,如果 initialCapacity 爲 11,得到 sizeCtl 爲 32。

Put過程分析

public V put(K key, V value) {
    return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
    if (key == null || value == null) throw new NullPointerException();
    // 得到 hash 值
    int hash = spread(key.hashCode());
    // 用於記錄相應鏈表的長度
    int binCount = 0;
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        // 如果數組"空",進行數組初始化
        if (tab == null || (n = tab.length) == 0)
            // 初始化數組,後面會詳細介紹
            tab = initTable();
 
        // 找該 hash 值對應的數組下標,得到第一個節點 f
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            // 如果數組該位置爲空,
            //    用一次 CAS 操作將這個新值放入其中即可,這個 put 操作差不多就結束了,可以拉到最後面了
            //          如果 CAS 失敗,那就是有併發操作,進到下一個循環就好了
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        // hash 居然可以等於 MOVED,這個需要到後面才能看明白,不過從名字上也能猜到,肯定是因爲在擴容
        else if ((fh = f.hash) == MOVED)
            // 幫助數據遷移,這個等到看完數據遷移部分的介紹後,再理解這個就很簡單了
            tab = helpTransfer(tab, f);
 
        else { // 到這裏就是說,f 是該位置的頭結點,而且不爲空
            V oldVal = null;
            // 獲取數組該位置的頭結點的監視器鎖
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    if (fh >= 0) { // 頭結點的 hash 值大於 0,說明是鏈表
                        // 用於累加,記錄鏈表的長度
                        binCount = 1;
                        // 遍歷鏈表
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                            // 如果發現了"相等"的 key,判斷是否要進行值覆蓋,然後也就可以 break 了
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            // 到了鏈表的最末端,將這個新值放到鏈表的最後面
                            Node<K,V> pred = e;
                            if ((e = e.next) == null) {
                                pred.next = new Node<K,V>(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    else if (f instanceof TreeBin) { // 紅黑樹
                        Node<K,V> p;
                        binCount = 2;
                        // 調用紅黑樹的插值方法插入新節點
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                       value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            // binCount != 0 說明上面在做鏈表操作
            if (binCount != 0) {
                // 判斷是否要將鏈表轉換爲紅黑樹,臨界值和 HashMap 一樣,也是 8
                if (binCount >= TREEIFY_THRESHOLD)
                    // 這個方法和 HashMap 中稍微有一點點不同,那就是它不是一定會進行紅黑樹轉換,
                    // 如果當前數組的長度小於 64,那麼會選擇進行數組擴容,而不是轉換爲紅黑樹
                    //    具體源碼我們就不看了,擴容部分後面說
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    // 
    addCount(1L, binCount);
    return null;
}

值得注意:

  1. 如果是在鏈表中插入,則插入的位置是在鏈表尾。
  2. 將鏈表轉換爲紅黑樹的鏈表長度臨界值爲8,和HashMap一樣。
  3. 和HashMap將鏈表轉換爲紅黑樹的方法有一點不同:不是一定會進行紅黑樹轉換,如果當前數組的長度小於64,那麼會進行數組擴容,而不是轉換爲紅黑樹。

初始化數組:initTable

  • 初始化一個合適大小的數組,然後會設置 sizeCtl。
  • 初始化方法中的併發問題是通過對 sizeCtl 進行一個 CAS 操作來控制的。
private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {
        // 初始化的"功勞"被其他線程"搶去"了
        if ((sc = sizeCtl) < 0)
            Thread.yield(); // lost initialization race; just spin
        // CAS 一下,將 sizeCtl 設置爲 -1,代表搶到了鎖
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            try {
                if ((tab = table) == null || tab.length == 0) {
                    // DEFAULT_CAPACITY 默認初始容量是 16
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    // 初始化數組,長度爲 16 或初始化時提供的長度
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    // 將這個數組賦值給 table,table 是 volatile 的
                    table = tab = nt;
                    // 如果 n 爲 16 的話,那麼這裏 sc = 12
                    // 其實就是 0.75 * n
                    sc = n - (n >>> 2);
                }
            } finally {
                // 設置 sizeCtl 爲 sc,我們就當是 12 吧
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}

鏈表轉紅黑樹: treeifyBin

treeifyBin不一定就進行紅黑樹轉換,也可能是僅僅對數組擴容。

private final void treeifyBin(Node<K,V>[] tab, int index) {
    Node<K,V> b; int n, sc;
    if (tab != null) {
        // MIN_TREEIFY_CAPACITY 爲 64
        // 所以,如果數組長度小於 64 的時候,其實也就是 32 或者 16 或者更小的時候,會進行數組擴容
        if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
            // 後面我們再詳細分析這個方法
            tryPresize(n << 1);
        // b 是頭結點
        else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
            // 加鎖
            synchronized (b) {
                if (tabAt(tab, index) == b) {
                    // 下面就是遍歷鏈表,建立一顆紅黑樹
                    TreeNode<K,V> hd = null, tl = null;
                    for (Node<K,V> e = b; e != null; e = e.next) {
                        TreeNode<K,V> p =
                            new TreeNode<K,V>(e.hash, e.key, e.val,
                                              null, null);
                        if ((p.prev = tl) == null)
                            hd = p;
                        else
                            tl.next = p;
                        tl = p;
                    }
                    // 將紅黑樹設置到數組相應位置中
                    setTabAt(tab, index, new TreeBin<K,V>(hd));
                }
            }
        }
    }
}

擴容:tryPresize

JDK1.8 CurrentHashMap的源碼難點主要在擴容操作和遷移操作

這裏的擴容也是做翻倍擴容的,擴容後數組容量爲原來的 2 倍。

// 首先要說明的是,方法參數 size 傳進來的時候就已經翻了倍了
private final void tryPresize(int size) {
    // c:size 的 1.5 倍,再加 1,再往上取最近的 2 的 n 次方。
    int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
        tableSizeFor(size + (size >>> 1) + 1);
    int sc;
    while ((sc = sizeCtl) >= 0) {
        Node<K,V>[] tab = table; int n;
        // 這個 if 分支和之前說的初始化數組的代碼基本上是一樣的,在這裏,我們可以不用管這塊代碼
        if (tab == null || (n = tab.length) == 0) {
            n = (sc > c) ? sc : c;
            if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                try {
                    if (table == tab) {
                        @SuppressWarnings("unchecked")
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = nt;
                        sc = n - (n >>> 2); // 0.75 * n
                    }
                } finally {
                    sizeCtl = sc;
                }
            }
        }
        else if (c <= sc || n >= MAXIMUM_CAPACITY)
            break;
        else if (tab == table) {
            // 我沒看懂 rs 的真正含義是什麼,不過也關係不大
            int rs = resizeStamp(n);
 
            if (sc < 0) {
                Node<K,V>[] nt;
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                    transferIndex <= 0)
                    break;
                // 2. 用 CAS 將 sizeCtl 加 1,然後執行 transfer 方法
                //    此時 nextTab 不爲 null
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                    transfer(tab, nt);
            }
            // 1. 將 sizeCtl 設置爲 (rs << RESIZE_STAMP_SHIFT) + 2)
            //     我是沒看懂這個值真正的意義是什麼?不過可以計算出來的是,結果是一個比較大的負數
            //  調用 transfer 方法,此時 nextTab 參數爲 null
            else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                         (rs << RESIZE_STAMP_SHIFT) + 2))
                transfer(tab, null);
        }
    }
}

這個方法的核心在於 sizeCtl 值的操作,首先將其設置爲一個負數,然後執行 transfer(tab, null),再下一個循環將 sizeCtl 加 1,並執行 transfer(tab, nt),之後可能是繼續 sizeCtl 加 1,並執行 transfer(tab, nt)。

所以,可能的操作就是執行 1 次 transfer(tab, null) + 多次 transfer(tab, nt),這裏怎麼結束循環的需要看完 transfer 源碼才清楚。

數據遷移:transfer

下面這個方法很點長,將原來的 tab 數組的元素遷移到新的 nextTab 數組中。

雖然我們之前說的 tryPresize 方法中多次調用 transfer 不涉及多線程,但是這個 transfer 方法可以在其他地方被調用,典型地,我們之前在說 put 方法的時候就說過了,請往上看 put 方法,是不是有個地方調用了 helpTransfer 方法,helpTransfer 方法會調用 transfer 方法的。

此方法支持多線程執行,外圍調用此方法的時候,會保證第一個發起數據遷移的線程,nextTab 參數爲 null,之後再調用此方法的時候,nextTab 不會爲 null。

閱讀源碼之前,先要理解併發操作的機制。原數組長度爲 n,所以我們有 n 個遷移任務,讓每個線程每次負責一個小任務是最簡單的,每做完一個任務再檢測是否有其他沒做完的任務,幫助遷移就可以了,而 Doug Lea 使用了一個 stride,簡單理解就是步長,每個線程每次負責遷移其中的一部分,如每次遷移 16 個小任務。所以,我們就需要一個全局的調度者來安排哪個線程執行哪幾個任務,這個就是屬性 transferIndex 的作用。

第一個發起數據遷移的線程會將 transferIndex 指向原數組最後的位置,然後從後往前的 stride 個任務屬於第一個線程,然後將 transferIndex 指向新的位置,再往前的 stride 個任務屬於第二個線程,依此類推。當然,這裏說的第二個線程不是真的一定指代了第二個線程,也可以是同一個線程,這個讀者應該能理解吧。其實就是將一個大的遷移任務分爲了一個個任務包。

private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
    int n = tab.length, stride;
 
    // stride 在單核下直接等於 n,多核模式下爲 (n>>>3)/NCPU,最小值是 16
    // stride 可以理解爲”步長“,有 n 個位置是需要進行遷移的,
    //   將這 n 個任務分爲多個任務包,每個任務包有 stride 個任務
    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        stride = MIN_TRANSFER_STRIDE; // subdivide range
 
    // 如果 nextTab 爲 null,先進行一次初始化
    //    前面我們說了,外圍會保證第一個發起遷移的線程調用此方法時,參數 nextTab 爲 null
    //       之後參與遷移的線程調用此方法時,nextTab 不會爲 null
    if (nextTab == null) {
        try {
            // 容量翻倍
            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
            nextTab = nt;
        } catch (Throwable ex) {      // try to cope with OOME
            sizeCtl = Integer.MAX_VALUE;
            return;
        }
        // nextTable 是 ConcurrentHashMap 中的屬性
        nextTable = nextTab;
        // transferIndex 也是 ConcurrentHashMap 的屬性,用於控制遷移的位置
        transferIndex = n;
    }
 
    int nextn = nextTab.length;
 
    // ForwardingNode 翻譯過來就是正在被遷移的 Node
    // 這個構造方法會生成一個Node,key、value 和 next 都爲 null,關鍵是 hash 爲 MOVED
    // 後面我們會看到,原數組中位置 i 處的節點完成遷移工作後,
    //    就會將位置 i 處設置爲這個 ForwardingNode,用來告訴其他線程該位置已經處理過了
    //    所以它其實相當於是一個標誌。
    ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
 
 
    // advance 指的是做完了一個位置的遷移工作,可以準備做下一個位置的了
    boolean advance = true;
    boolean finishing = false; // to ensure sweep before committing nextTab
 
    /*
     * 下面這個 for 循環,最難理解的在前面,而要看懂它們,應該先看懂後面的,然後再倒回來看
     * 
     */
 
    // i 是位置索引,bound 是邊界,注意是從後往前
    for (int i = 0, bound = 0;;) {
        Node<K,V> f; int fh;
 
        // 下面這個 while 真的是不好理解
        // advance 爲 true 表示可以進行下一個位置的遷移了
        //   簡單理解結局:i 指向了 transferIndex,bound 指向了 transferIndex-stride
        while (advance) {
            int nextIndex, nextBound;
            if (--i >= bound || finishing)
                advance = false;
 
            // 將 transferIndex 值賦給 nextIndex
            // 這裏 transferIndex 一旦小於等於 0,說明原數組的所有位置都有相應的線程去處理了
            else if ((nextIndex = transferIndex) <= 0) {
                i = -1;
                advance = false;
            }
            else if (U.compareAndSwapInt
                     (this, TRANSFERINDEX, nextIndex,
                      nextBound = (nextIndex > stride ?
                                   nextIndex - stride : 0))) {
                // 看括號中的代碼,nextBound 是這次遷移任務的邊界,注意,是從後往前
                bound = nextBound;
                i = nextIndex - 1;
                advance = false;
            }
        }
        if (i < 0 || i >= n || i + n >= nextn) {
            int sc;
            if (finishing) {
                // 所有的遷移操作已經完成
                nextTable = null;
                // 將新的 nextTab 賦值給 table 屬性,完成遷移
                table = nextTab;
                // 重新計算 sizeCtl:n 是原數組長度,所以 sizeCtl 得出的值將是新數組長度的 0.75 倍
                sizeCtl = (n << 1) - (n >>> 1);
                return;
            }
 
            // 之前我們說過,sizeCtl 在遷移前會設置爲 (rs << RESIZE_STAMP_SHIFT) + 2
            // 然後,每有一個線程參與遷移就會將 sizeCtl 加 1,
            // 這裏使用 CAS 操作對 sizeCtl 進行減 1,代表做完了屬於自己的任務
            if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                // 任務結束,方法退出
                if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                    return;
 
                // 到這裏,說明 (sc - 2) == resizeStamp(n) << RESIZE_STAMP_SHIFT,
                // 也就是說,所有的遷移任務都做完了,也就會進入到上面的 if(finishing){} 分支了
                finishing = advance = true;
                i = n; // recheck before commit
            }
        }
        // 如果位置 i 處是空的,沒有任何節點,那麼放入剛剛初始化的 ForwardingNode ”空節點“
        else if ((f = tabAt(tab, i)) == null)
            advance = casTabAt(tab, i, null, fwd);
        // 該位置處是一個 ForwardingNode,代表該位置已經遷移過了
        else if ((fh = f.hash) == MOVED)
            advance = true; // already processed
        else {
            // 對數組該位置處的結點加鎖,開始處理數組該位置處的遷移工作
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    Node<K,V> ln, hn;
                    // 頭結點的 hash 大於 0,說明是鏈表的 Node 節點
                    if (fh >= 0) {
                        // 下面這一塊和 Java7 中的 ConcurrentHashMap 遷移是差不多的,
                        // 需要將鏈表一分爲二,
                        //   找到原鏈表中的 lastRun,然後 lastRun 及其之後的節點是一起進行遷移的
                        //   lastRun 之前的節點需要進行克隆,然後分到兩個鏈表中
                        int runBit = fh & n;
                        Node<K,V> lastRun = f;
                        for (Node<K,V> p = f.next; p != null; p = p.next) {
                            int b = p.hash & n;
                            if (b != runBit) {
                                runBit = b;
                                lastRun = p;
                            }
                        }
                        if (runBit == 0) {
                            ln = lastRun;
                            hn = null;
                        }
                        else {
                            hn = lastRun;
                            ln = null;
                        }
                        for (Node<K,V> p = f; p != lastRun; p = p.next) {
                            int ph = p.hash; K pk = p.key; V pv = p.val;
                            if ((ph & n) == 0)
                                ln = new Node<K,V>(ph, pk, pv, ln);
                            else
                                hn = new Node<K,V>(ph, pk, pv, hn);
                        }
                        // 其中的一個鏈表放在新數組的位置 i
                        setTabAt(nextTab, i, ln);
                        // 另一個鏈表放在新數組的位置 i+n
                        setTabAt(nextTab, i + n, hn);
                        // 將原數組該位置處設置爲 fwd,代表該位置已經處理完畢,
                        //    其他線程一旦看到該位置的 hash 值爲 MOVED,就不會進行遷移了
                        setTabAt(tab, i, fwd);
                        // advance 設置爲 true,代表該位置已經遷移完畢
                        advance = true;
                    }
                    else if (f instanceof TreeBin) {
                        // 紅黑樹的遷移
                        TreeBin<K,V> t = (TreeBin<K,V>)f;
                        TreeNode<K,V> lo = null, loTail = null;
                        TreeNode<K,V> hi = null, hiTail = null;
                        int lc = 0, hc = 0;
                        for (Node<K,V> e = t.first; e != null; e = e.next) {
                            int h = e.hash;
                            TreeNode<K,V> p = new TreeNode<K,V>
                                (h, e.key, e.val, null, null);
                            if ((h & n) == 0) {
                                if ((p.prev = loTail) == null)
                                    lo = p;
                                else
                                    loTail.next = p;
                                loTail = p;
                                ++lc;
                            }
                            else {
                                if ((p.prev = hiTail) == null)
                                    hi = p;
                                else
                                    hiTail.next = p;
                                hiTail = p;
                                ++hc;
                            }
                        }
                        // 如果一分爲二後,節點數少於 8,那麼將紅黑樹轉換回鏈表
                        ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                            (hc != 0) ? new TreeBin<K,V>(lo) : t;
                        hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                            (lc != 0) ? new TreeBin<K,V>(hi) : t;
 
                        // 將 ln 放置在新數組的位置 i
                        setTabAt(nextTab, i, ln);
                        // 將 hn 放置在新數組的位置 i+n
                        setTabAt(nextTab, i + n, hn);
                        // 將原數組該位置處設置爲 fwd,代表該位置已經處理完畢,
                        //    其他線程一旦看到該位置的 hash 值爲 MOVED,就不會進行遷移了
                        setTabAt(tab, i, fwd);
                        // advance 設置爲 true,代表該位置已經遷移完畢
                        advance = true;
                    }
                }
            }
        }
    }
}

說到底,transfer 這個方法並沒有實現所有的遷移任務,每次調用這個方法只實現了 transferIndex 往前 stride 個位置的遷移工作,其他的需要由外圍來控制。

這個時候,再回去仔細看 tryPresize 方法可能就會更加清晰一些了。

put過程工作原理:

putVal(K key, V value, boolean onlyIfAbsent)方法的工作如下:
1、檢查key/value是否爲空,如果爲空,則拋異常,否則進行2
2、進入for死循環,進行3
3、檢查table是否初始化了,如果沒有,則調用initTable()進行初始化然後進行 2,否則進行4
4、根據key的hash值計算出其應該在table中儲存的位置i,取出table[i]的節點用f表示。
    根據f的不同有如下三種情況:1)如果table[i]==null(即該位置的節點爲空,沒有發生碰撞),
                                則利用CAS操作直接存儲在該位置,如果CAS操作成功則退出死循環。
                                2)如果table[i]!=null(即該位置已經有其它節點,發生碰撞),碰撞處理也有兩種情況
                                    2.1)檢查table[i]的節點的hash是否等於MOVED,如果等於,則檢測到正在擴容,則幫助其擴容
                                    2.2)說明table[i]的節點的hash值不等於MOVED,如果table[i]爲鏈表節點,則將此節點插入鏈表中即可
                                        如果table[i]爲樹節點,則將此節點插入樹中即可。插入成功後,進行 5
5、如果table[i]的節點是鏈表節點,則檢查table的第i個位置的鏈表是否需要轉化爲樹,如果需要則調用treeifyBin函數進行轉化

用兩句話總結爲:

1、第一步根據給定的key的hash值找到其在table中的位置index。

2、找到位置index後,存儲進行就好了。

只是這裏的存儲有三種情況罷了,

第一種:table[index]中沒有任何其他元素,即此元素沒有發生碰撞,這種情況直接存儲就好了。

第二種,table[i]存儲的是一個鏈表,如果鏈表不存在key則直接加入到鏈表尾部即可,如果存在key則更新其對應的value。

第三種,table[i]存儲的是一個樹,則按照樹添加節點的方法添加就好。

get過程分析

沒加鎖

  1. 計算 hash 值
  2. 根據 hash 值找到數組對應位置: (n – 1) & h
  3. 根據該位置處結點性質進行相應查找
  • 如果該位置爲 null,那麼直接返回 null 就可以了
  • 如果該位置處的節點剛好就是我們需要的,返回該節點的值即可
  • 如果該位置節點的 hash 值小於 0,說明正在擴容,或者是紅黑樹,則進行樹查詢。
  • 如果以上 3 條都不滿足,那就是鏈表,進行遍歷比對即可
public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    int h = spread(key.hashCode());
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {
        // 判斷頭結點是否就是我們需要的節點
        if ((eh = e.hash) == h) {
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
        }
        // 如果頭結點的 hash 小於 0,說明 正在擴容,或者該位置是紅黑樹
        else if (eh < 0)
            // 參考 ForwardingNode.find(int h, Object k) 和 TreeBin.find(int h, Object k)
            return (p = e.find(h, key)) != null ? p.val : null;
 
        // 遍歷鏈表
        while ((e = e.next) != null) {
            if (e.hash == h &&
                ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}


發佈了142 篇原創文章 · 獲贊 13 · 訪問量 5萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章