mina源码分析三(转)

AbstractIoAcceptor类继承自AbstractIoService基类,并实现了IoAcceptor接口,它主要的成员变量是本地绑定地址。

 private final List<SocketAddress> defaultLocalAddresses =
         new ArrayList<SocketAddress>();
     private final List<SocketAddress> unmodifiableDefaultLocalAddresses =
         Collections.unmodifiableList(defaultLocalAddresses);
     private final Set<SocketAddress> boundAddresses =
         new HashSet<SocketAddress>();

在调用bindunbind方法时需要先获取绑定锁bindLock,具体的绑定操作还是在bind0这个方法中实现的。一旦绑定成功后,就会向服务监听者发出服务激活的事件(ServiceActivated),同理,解除绑定也是在unbind0这个方法中具体实现的。一旦解除绑定成功后,就会向服务监听者发出服务激活的事件(ServiceDeActivated)

      AbstractIoConnector类继承自AbstractIoService基类,并实现了IoConnect接口,连接超时检查间隔时间默认是50毫秒,超时时间默认为1分钟,用户可以自行配置。此类中重要的方法就是connect方法,其中调用了具体的连接逻辑实现connect0,

 protected abstract ConnectFuture connect0(SocketAddress remoteAddress,
             SocketAddress localAddress, IoSessionInitializer<? extends ConnectFuture> sessionInitializer);

AbstractIoConnector在AbstractIoService的基础上,在会话初始化结束时增加了一个功能,就是加入了一个监听者,当连接请求被取消时立即结束此会话。

protected final void finishSessionInitialization0(

            final IoSession session, IoFuture future) {

        // In case that ConnectFuture.cancel() is invoked before

        // setSession() is invoked, add a listener that closes the

        // connection immediately on cancellation.

        future.addListener(new IoFutureListener<ConnectFuture>() {

            public void operationComplete(ConnectFuture future) {

                if (future.isCanceled()) {

                    session.close();

                }

            }

        });

}

下面再来看一个IoProcessor接口的基本实现类SimpleIoProcessorPool,它的泛型参数是AbstractIoSession的子类,表示此Processor管理的具体会话类型。并且这个类还实现了池化,它会将多个IoSession分布到多个IoProcessor上去管理。下面是文档中给出的一个示例:

// Create a shared pool.

 SimpleIoProcessorPool<NioSession> pool = 

         new SimpleIoProcessorPool<NioSession>(NioProcessor.class, 16);

 

 // Create two services that share the same pool.

 SocketAcceptor acceptor = new NioSocketAcceptor(pool);

 SocketConnector connector = new NioSocketConnector(pool);

 

 // Release related resources.

 connector.dispose();

 acceptor.dispose();

 pool.dispose();

 与Processor池有关的包括如下这些成员变量:

private static final int DEFAULT_SIZE = Runtime.getRuntime().availableProcessors() + 1;//处理池大小,默认是处理器数+1, 便于多核分布处理
    private final IoProcessor<T>[] pool;//IoProcessor池
    private final AtomicInteger processorDistributor = new AtomicInteger();

Processor池的构造过程,其中有三种构造函数供选择来构造一个Processor :
1.带参数 ExecutorService 的构造函数. 
2.带参数为 Executor的构造函数. 
3.默认构造函数 

pool = new IoProcessor[size];//构建池

        

        boolean success = false;

        try {

            for (int i = 0; i < pool.length; i ++) {

                IoProcessor<T> processor = null;

                

//有三种构造函数供选择来构造一个Processor               

 try {

                    try {

                        processor = processorType.getConstructor(ExecutorService.class).newInstance(executor);

                    } catch (NoSuchMethodException e) {

                        // To the next step

                    }

                    

                    if (processor == null) {

                        try {

                            processor = processorType.getConstructor(Executor.class).newInstance(executor);

                        } catch (NoSuchMethodException e) {

                            // To the next step

                        }

                    }

                    

                    if (processor == null) {

                        try {

                            processor = processorType.getConstructor().newInstance();

                        } catch (NoSuchMethodException e) {

                            // To the next step

                        }

                    }

                } catch (RuntimeException e) {

                    throw e;

                } catch (Exception e) {

                    throw new RuntimeIoException(

                            "Failed to create a new instance of " + processorType.getName(), e);

                }

                pool[i] = processor;

            }

            

            success = true;

        } finally {

            if (!success) {

                dispose();

            }

        }

Processor池中分配一个processor的过程,注意一个processor是可以同时管理多个session

private IoProcessor<T> getProcessor(T session) 

{//返回session所在的processor,若没分配,则为之分配一个

        IoProcessor<T> p = (IoProcessor<T>) session.getAttribute(PROCESSOR);//看session的属性中是否保存对应的Processor

        if (p == null) 

{//还没为此session分配processor

            p = nextProcessor();//从池中取一个processor

            IoProcessor<T> oldp =

                (IoProcessor<T>) session.setAttributeIfAbsent(PROCESSOR, p);

            if (oldp != null) 

{//原来的processor

                p = oldp;

            }

        }

        return p;

    }



    private IoProcessor<T> nextProcessor() 

    {//从池中分配一个Processor

        checkDisposal();

        return pool[Math.abs(processorDistributor.getAndIncrement()) % pool.length];

    }


发布了182 篇原创文章 · 获赞 7 · 访问量 12万+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章