Java HashMap實現原理


Mark一下,同時可以很好的結合hashCode()和equals()方法,

覆蓋equals方法時最好覆蓋hashcode(),保證equals的兩個對象,hashcode也相等

反過來:hashcode()不等,一定能推出equals()也不等;hashcode()相等,equals()可能相等,也可能不等。

因爲HashMap在get時,先比較hashcode,再比較equals,hashcode==&&equals,兩者都爲true,則認爲是相同的key

1.    HashMap概述:

   HashMap是基於哈希表的Map接口的非同步實現。此實現提供所有可選的映射操作,並允許使用null值和null鍵。此類不保證映射的順序,特別是它不保證該順序恆久不變。

2.    HashMap的數據結構:

   在java編程語言中,最基本的結構就是兩種,一個是數組,另外一個是模擬指針(引用),所有的數據結構都可以用這兩個基本結構來構造的,HashMap也不例外。HashMap實際上是一個“鏈表散列”的數據結構,即數組和鏈表的結合體。

   從上圖中可以看出,HashMap底層就是一個數組結構,數組中的每一項又是一個鏈表。當新建一個HashMap的時候,就會初始化一個數組。

   源碼如下:

/**

* The table, resized as necessary. Length MUST Always be a power of two.

*/

transient Entry[] table;

static class Entry

    final K key;

    V value;

    Entry

    final int hash;

    ……

}

   可以看出,Entry就是數組中的元素,每個 Map.Entry 其實就是一個key-value對,它持有一個指向下一個元素的引用,這就構成了鏈表。

3.    HashMap的存取實現:

   1) 存儲:

public V put(K key, V value) {

    // HashMap允許存放null鍵和null值。

    // 當key爲null時,調用putForNullKey方法,將value放置在數組第一個位置。

    if (key == null)

        return putForNullKey(value);

    // 根據key的keyCode重新計算hash值。

    int hash = hash(key.hashCode());

    // 搜索指定hash值在對應table中的索引。

    int i = indexFor(hash, table.length);

    // 如果 i 索引處的 Entry 不爲 null,通過循環不斷遍歷 e 元素的下一個元素。

    for (Entry

        Object k;

        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {

            V oldValue = e.value;

            e.value = value;

            e.recordAccess(this);

            return oldValue;

        }

    }

    // 如果i索引處的Entry爲null,表明此處還沒有Entry。

    modCount++;

    // 將key、value添加到i索引處。

    addEntry(hash, key, value, i);

    return null;

}

   從上面的源代碼中可以看出:當我們往HashMap中put元素的時候,先根據key的hashCode重新計算hash值,根據hash值得到這個元素在數組中的位置(即下標),如果數組該位置上已經存放有其他元素了,那麼在這個位置上的元素將以鏈表的形式存放,新加入的放在鏈頭,最先加入的放在鏈尾。如果數組該位置上沒有元素,就直接將該元素放到此數組中的該位置上。

   addEntry(hash, key, value, i)方法根據計算出的hash值,將key-value對放在數組table的i索引處。addEntry 是 HashMap 提供的一個包訪問權限的方法,代碼如下:

void addEntry(int hash, K key, V value, int bucketIndex) {

    // 獲取指定 bucketIndex 索引處的 Entry

    Entry

    // 將新創建的 Entry 放入 bucketIndex 索引處,並讓新的 Entry 指向原來的 Entry

    table[bucketIndex] = new Entry

    // 如果 Map 中的 key-value 對的數量超過了極限

    if (size++ >= threshold)

    // 把 table 對象的長度擴充到原來的2倍。

        resize(2 * table.length);

}

   當系統決定存儲HashMap中的key-value對時,完全沒有考慮Entry中的value,僅僅只是根據key來計算並決定每個Entry的存儲位置。我們完全可以把 Map 集合中的 value 當成 key 的附屬,當系統決定了 key 的存儲位置之後,value 隨之保存在那裏即可。

   hash(int h)方法根據key的hashCode重新計算一次散列。此算法加入了高位計算,防止低位不變,高位變化時,造成的hash衝突。

static int hash(int h) {

    h ^= (h >>> 20) ^ (h >>> 12);

    return h ^ (h >>> 7) ^ (h >>> 4);

}

   我們可以看到在HashMap中要找到某個元素,需要根據key的hash值來求得對應數組中的位置。如何計算這個位置就是hash算法。前面說過 HashMap的數據結構是數組和鏈表的結合,所以我們當然希望這個HashMap裏面的 元素位置儘量的分佈均勻些,儘量使得每個位置上的元素數量只有一個,那麼當我們用hash算法求得這個位置的時候,馬上就可以知道對應位置的元素就是我們要的,而不用再去遍歷鏈表,這樣就大大優化了查詢的效率。

   對於任意給定的對象,只要它的 hashCode() 返回值相同,那麼程序調用 hash(int h) 方法所計算得到的 hash 碼值總是相同的。我們首先想到的就是把hash值對數組長度取模運算,這樣一來,元素的分佈相對來說是比較均勻的。但是,“模”運算的消耗還是比較大的,在HashMap中是這樣做的:調用 indexFor(int h, int length) 方法來計算該對象應該保存在 table 數組的哪個索引處。indexFor(int h, int length) 方法的代碼如下:

static int indexFor(int h, int length) {

    return h & (length-1);

}

   這個方法非常巧妙,它通過 h & (table.length -1) 來得到該對象的保存位,而HashMap底層數組的長度總是 2 的 n 次方,這是HashMap在速度上的優化。在 HashMap 構造器中有如下代碼:

int capacity = 1;

    while (capacity < initialCapacity)

        capacity <<= 1;

   這段代碼保證初始化時HashMap的容量總是2的n次方,即底層數組的長度總是爲2的n次方。

當length總是 2 的n次方時,h& (length-1)運算等價於對length取模,也就是h%length,但是&比%具有更高的效率。

   這看上去很簡單,其實比較有玄機的,我們舉個例子來說明:

   假設數組長度分別爲15和16,優化後的hash碼分別爲8和9,那麼&運算後的結果如下:

       h & (table.length-1)         hash               table.length-1

       8 & (15-1):                      0100      &              1110         =       0100

       9 & (15-1):                      0101      &              1110         =       0100

       --------------------------------------------------------------------------------------

       8 & (16-1):                      0100       &             1111         =       0100

       9 & (16-1):                      0101       &             1111         =       0101

   從上面的例子中可以看出:當它們和15-1(1110)“與”的時候,產生了相同的結果,也就是說它們會定位到數組中的同一個位置上去,這就產生了碰撞,8和9會被放到數組中的同一個位置上形成鏈表,那麼查詢的時候就需要遍歷這個鏈 表,得到8或者9,這樣就降低了查詢的效率。同時,我們也可以發現,當數組長度爲15的時候,hash值會與15-1(1110)進行“與”,那麼 最後一位永遠是0,而0001,0011,0101,1001,1011,0111,1101這幾個位置永遠都不能存放元素了,空間浪費相當大,更糟的是這種情況中,數組可以使用的位置比數組長度小了很多,這意味着進一步增加了碰撞的機率,減慢了查詢的效率!而當數組長度爲16時,即爲2的n次方時,2n-1得到的二進制數的每個位上的值都爲1,這使得在低位上&時,得到的和原hash的低位相同,加之hash(int h)方法對key的hashCode的進一步優化,加入了高位計算,就使得只有相同的hash值的兩個值纔會被放到數組中的同一個位置上形成鏈表。

   所以說,當數組長度爲2的n次冪的時候,不同的key算得得index相同的機率較小,那麼數據在數組上分佈就比較均勻,也就是說碰撞的機率小,相對的,查詢的時候就不用遍歷某個位置上的鏈表,這樣查詢效率也就較高了。

   根據上面 put 方法的源代碼可以看出,當程序試圖將一個key-value對放入HashMap中時,程序首先根據該 key 的 hashCode() 返回值決定該 Entry 的存儲位置:如果兩個 Entry 的 key 的 hashCode() 返回值相同,那它們的存儲位置相同。如果這兩個 Entry 的 key 通過 equals 比較返回 true,新添加 Entry 的 value 將覆蓋集合中原有 Entry 的 value,但key不會覆蓋。如果這兩個 Entry 的 key 通過 equals 比較返回 false,新添加的 Entry 將與集合中原有 Entry 形成 Entry 鏈,而且新添加的 Entry 位於 Entry 鏈的頭部——具體說明繼續看 addEntry() 方法的說明。

   2) 讀取:

public V get(Object key) {

    if (key == null)

        return getForNullKey();

    int hash = hash(key.hashCode());

    for (Entry

        e != null;

        e = e.next) {

        Object k;

        if (e.hash == hash && ((k = e.key) == key || key.equals(k)))

            return e.value;

    }

    return null;

}

   有了上面存儲時的hash算法作爲基礎,理解起來這段代碼就很容易了。從上面的源代碼中可以看出:從HashMap中get元素時,首先計算key的 hashCode,找到數組中對應位置的某一元素,然後通過key的equals方法在對應位置的鏈表中找到需要的元素。

   3) 歸納起來簡單地說,HashMap 在底層將 key-value 當成一個整體進行處理,這個整體就是一個 Entry 對象。HashMap 底層採用一個 Entry[] 數組來保存所有的 key-value 對,當需要存儲一個 Entry 對象時,會根據hash算法來決定其在數組中的存儲位置,在根據equals方法決定其在該數組位置上的鏈表中的存儲位置;當需要取出一個Entry時,也會根據hash算法找到其在數組中的存儲位置,再根據equals方法從該位置上的鏈表中取出該Entry。

4.    HashMap的resize(rehash):

   當HashMap中的元素越來越多的時候,hash衝突的機率也就越來越高,因爲數組的長度是固定的。所以爲了提高查詢的效率,就要對HashMap的數組進行擴容,數組擴容這個操作也會出現在ArrayList中,這是一個常用的操作,而在HashMap數組擴容之後,最消耗性能的點就出現了:原數組中的數據必須重新計算其在新數組中的位置,並放進去,這就是resize。

   那麼HashMap什麼時候進行擴容呢?當HashMap中的元素個數超過數組大小*loadFactor時,就會進行數組擴容,loadFactor的默認值爲0.75,這是一個折中的取值。也就是說,默認情況下,數組大小爲16,那麼當HashMap中元素個數超過16*0.75=12的時候,就把數組的大小擴展爲 2*16=32,即擴大一倍,然後重新計算每個元素在數組中的位置,而這是一個非常消耗性能的操作,所以如果我們已經預知HashMap中元素的個數,那麼預設元素的個數能夠有效的提高HashMap的性能。

5.    HashMap的性能參數:

   HashMap 包含如下幾個構造器:

   HashMap():構建一個初始容量爲 16,負載因子爲 0.75 的 HashMap。

   HashMap(int initialCapacity):構建一個初始容量爲 initialCapacity,負載因子爲 0.75 的 HashMap。

   HashMap(int initialCapacity, float loadFactor):以指定初始容量、指定的負載因子創建一個 HashMap。

   HashMap的基礎構造器HashMap(int initialCapacity, float loadFactor)帶有兩個參數,它們是初始容量initialCapacity和加載因子loadFactor。

   initialCapacity:HashMap的最大容量,即爲底層數組的長度。

   loadFactor:負載因子loadFactor定義爲:散列表的實際元素數目(n)/ 散列表的容量(m)。

   負載因子衡量的是一個散列表的空間的使用程度,負載因子越大表示散列表的裝填程度越高,反之愈小。對於使用鏈表法的散列表來說,查找一個元素的平均時間是 O(1+a),因此如果負載因子越大,對空間的利用更充分,然而後果是查找效率的降低;如果負載因子太小,那麼散列表的數據將過於稀疏,對空間造成嚴重浪費。

   HashMap的實現中,通過threshold字段來判斷HashMap的最大容量:

threshold = (int)(capacity * loadFactor);

   結合負載因子的定義公式可知,threshold就是在此loadFactor和capacity對應下允許的最大元素數目,超過這個數目就重新 resize,以降低實際的負載因子。默認的的負載因子0.75是對空間和時間效率的一個平衡選擇。當容量超出此最大容量時, resize後的HashMap容量是容量的兩倍:

if (size++ >= threshold)  

    resize(2 * table.length); 

6.    Fail-Fast機制:

   我們知道java.util.HashMap不是線程安全的,因此如果在使用迭代器的過程中有其他線程修改了map,那麼將拋出ConcurrentModificationException,這就是所謂fail-fast策略。

   這一策略在源碼中的實現是通過modCount域,modCount顧名思義就是修改次數,對HashMap內容的修改都將增加這個值,那麼在迭代器初始化過程中會將這個值賦給迭代器的expectedModCount。

HashIterator() {

    expectedModCount = modCount;

    if (size > 0) { // advance to first entry

    Entry[] t = table;

    while (index < t.length && (next = t[index++]) == null)

        ;

    }

}

   在迭代過程中,判斷modCount跟expectedModCount是否相等,如果不相等就表示已經有其他線程修改了Map:

   注意到modCount聲明爲volatile,保證線程之間修改的可見性。

final Entry

    if (modCount != expectedModCount)  

        throw new ConcurrentModificationException();

   在HashMap的API中指出:

   由所有HashMap類的“collection 視圖方法”所返回的迭代器都是快速失敗的:在迭代器創建之後,如果從結構上對映射進行修改,除非通過迭代器本身的 remove 方法,其他任何時間任何方式的修改,迭代器都將拋出 ConcurrentModificationException。因此,面對併發的修改,迭代器很快就會完全失敗,而不冒在將來不確定的時間發生任意不確定行爲的風險。

   注意,迭代器的快速失敗行爲不能得到保證,一般來說,存在非同步的併發修改時,不可能作出任何堅決的保證。快速失敗迭代器盡最大努力拋出 ConcurrentModificationException。因此,編寫依賴於此異常的程序的做法是錯誤的,正確做法是:迭代器的快速失敗行爲應該僅用於檢測程序錯誤。

 轉自網絡:http://edu.codepub.com/2011/0513/31570.php

發佈了5 篇原創文章 · 獲贊 3 · 訪問量 1萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章