Convolutional neural networks(CNN) (七) Softmax Regression Exercise

{作爲CNN學習入門的一部分,筆者在這裏逐步給出UFLDL的各章節Exercise的個人代碼實現,供大家參考指正}

理論部分可以在線參閱(頁面最下方有中文選項)Softmax Regression章節的內容。


Notes:

1. 筆者得到的MNIST數據集的名稱softmaxExercise.m裏面的並不一致,讀者做實驗時也請注意可能需要修改。

2. Step 2: Implement softmaxCost 中存在可以Vectorization優化的部分,請注意參照示例代碼片

3. 筆者沒有想到直觀的將J(Theta)Gradient完全Vectorization加速的方法,因此,對於Classes還是有一重Loop。


softmaxExercise.m :

%% CS294A/CS294W Softmax Exercise 

%  Instructions
%  ------------
% 
%  This file contains code that helps you get started on the
%  softmax exercise. You will need to write the softmax cost function 
%  in softmaxCost.m and the softmax prediction function in softmaxPred.m. 
%  For this exercise, you will not need to change any code in this file,
%  or any other files other than those mentioned above.
%  (However, you may be required to do so in later exercises)

%%======================================================================
%% STEP 0: Initialise constants and parameters
%
%  Here we define and initialise some constants which allow your code
%  to be used more generally on any arbitrary input. 
%  We also initialise some parameters used for tuning the model.

inputSize = 28 * 28; % Size of input vector (MNIST images are 28x28)
numClasses = 10;     % Number of classes (MNIST images fall into 10 classes)

lambda = 1e-4; % Weight decay parameter

%%======================================================================
%% STEP 1: Load data
%
%  In this section, we load the input and output data.
%  For softmax regression on MNIST pixels, 
%  the input data is the images, and 
%  the output data is the labels.
%

% Change the filenames if you've saved the files under different names
% On some platforms, the files might be saved as 
% train-images.idx3-ubyte / train-labels.idx1-ubyte

images = loadMNISTImages('mnist/train-images.idx3-ubyte');
labels = loadMNISTLabels('mnist/train-labels.idx1-ubyte');
labels(labels==0) = 10; % Remap 0 to 10

inputData = images;

% For debugging purposes, you may wish to reduce the size of the input data
% in order to speed up gradient checking. 
% Here, we create synthetic dataset using random data for testing

DEBUG = false; % Set DEBUG to true when debugging.
if DEBUG
    inputSize = 8;
    inputData = randn(8, 100);
    labels = randi(10, 100, 1);
end

% Randomly initialise theta
theta = 0.005 * randn(numClasses * inputSize, 1);

%%======================================================================
%% STEP 2: Implement softmaxCost
%
%  Implement softmaxCost in softmaxCost.m. 

[cost, grad] = softmaxCost(theta, numClasses, inputSize, lambda, inputData, labels);
                                     
%%======================================================================
%% STEP 3: Gradient checking
%
%  As with any learning algorithm, you should always check that your
%  gradients are correct before learning the parameters.
% 

if DEBUG
    numGrad = computeNumericalGradient( @(x) softmaxCost(x, numClasses, ...
                                    inputSize, lambda, inputData, labels), theta);

    % Use this to visually compare the gradients side by side
    disp([numGrad grad]); 

    % Compare numerically computed gradients with those computed analytically
    diff = norm(numGrad-grad)/norm(numGrad+grad);
    disp(diff); 
    % The difference should be small. 
    % In our implementation, these values are usually less than 1e-7.

    % When your gradients are correct, congratulations!
    
    % @6.3522e-10
end

%%======================================================================
%% STEP 4: Learning parameters
%
%  Once you have verified that your gradients are correct, 
%  you can start training your softmax regression code using softmaxTrain
%  (which uses minFunc).

options.maxIter = 100;
softmaxModel = softmaxTrain(inputSize, numClasses, lambda, ...
                            inputData, labels, options);
                          
% Although we only use 100 iterations here to train a classifier for the 
% MNIST data set, in practice, training for more iterations is usually
% beneficial.

%%======================================================================
%% STEP 5: Testing
%
%  You should now test your model against the test images.
%  To do this, you will first need to write softmaxPredict
%  (in softmaxPredict.m), which should return predictions
%  given a softmax model and the input data.

images = loadMNISTImages('mnist/t10k-images.idx3-ubyte');
labels = loadMNISTLabels('mnist/t10k-labels.idx1-ubyte');
labels(labels==0) = 10; % Remap 0 to 10

inputData = images;

% You will have to implement softmaxPredict in softmaxPredict.m
[pred] = softmaxPredict(softmaxModel, inputData);

acc = mean(labels(:) == pred(:));
fprintf('Accuracy: %0.3f%%\n', acc * 100);

% Accuracy is the proportion of correctly classified images
% After 100 iterations, the results for our implementation were:
%
% Accuracy: 92.200%
% My Accuracy: 92.640%
%
% If your values are too low (accuracy less than 0.91), you should check 
% your code for errors, and make sure you are training on the 
% entire data set of 60000 28x28 training images 
% (unless you modified the loading code, this should be the case)
softmaxCost.m : 

function [cost, grad] = softmaxCost(theta, numClasses, inputSize, lambda, data, labels)

% numClasses - the number of classes 
% inputSize - the size N of the input vector
% lambda - weight decay parameter
% data - the N x M input matrix, where each column data(:, i) corresponds to
%        a single test set
% labels - an M x 1 matrix containing the labels corresponding for the input data
%

% Unroll the parameters from theta
theta = reshape(theta, numClasses, inputSize);

numCases = size(data, 2);

groundTruth = full(sparse(labels, 1:numCases, 1));
%  cost = 0;

thetagrad = zeros(numClasses, inputSize);

%% ---------- YOUR CODE HERE --------------------------------------
%  Instructions: Compute the cost and gradient for softmax regression.
%                You need to compute thetagrad and cost.
%                The groundTruth matrix might come in handy.

M = theta * data; % M(r,c) is theta.T.r*x(:,c)
M = bsxfun(@minus, M, max(M, [], 1)); % Preventing overflows.
M = exp(M); 
M = bsxfun(@rdivide, M, sum(M)); % Dividing all elements in each column by their column sum.
J_theta = sum(sum(log(M).*groundTruth));
J_theta = -J_theta / numCases;

WeightDecay = lambda * sum(sum(theta.^2)) / 2;

cost = J_theta + WeightDecay;

M = groundTruth - M;

for i = 1:1:numClasses
    thetagrad(i,:) = sum(bsxfun(@times, data, M(i,:)), 2); % Array multiply
end

thetagrad = -thetagrad/numCases + lambda * theta;

% ------------------------------------------------------------------
% Unroll the gradient matrices into a vector for minFunc
grad = [thetagrad(:)];
end

筆者在編寫此段代碼時,出現了三處錯誤:

1. M = exp(M); 被遺漏

2. M = log(M); 錯誤的賦值

3. thetagrad(i,:) = sum(bsxfun(@times, data, M(i,:)), 2); @times開始直接複製的原有代碼 @plus
因此,Gradient Check是不可或缺的。


softmaxPredict.m : 

function [pred] = softmaxPredict(softmaxModel, data)

% softmaxModel - model trained using softmaxTrain
% data - the N x M input matrix, where each column data(:, i) corresponds to
%        a single test set
%
% Your code should produce the prediction matrix 
% pred, where pred(i) is argmax_c P(y(c) | x(i)).
 
% Unroll the parameters from theta
theta = softmaxModel.optTheta;  % this provides a numClasses x inputSize matrix
pred = zeros(1, size(data, 2));

%% ---------- YOUR CODE HERE --------------------------------------
%  Instructions: Compute pred using theta assuming that the labels start 
%                from 1.

M = theta * data;
[argmax_c_value_Vec, argmax_c_index_Vec] = max(M, [], 1);
pred = argmax_c_index_Vec;

% ---------------------------------------------------------------------

end
實驗結果:


198.781/60 = 3.313 mins

Accuracy = 92.640 %

發佈了46 篇原創文章 · 獲贊 25 · 訪問量 19萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章