Assignment | 05-week3 -Part_1-Neural Machine Translation

該系列僅在原課程基礎上課後作業部分添加個人學習筆記,如有錯誤,還請批評指教。- ZJ

Coursera 課程 |deeplearning.ai |網易雲課堂

CSDNhttps://blog.csdn.net/JUNJUN_ZHAO/article/details/79667591


Welcome to your first programming assignment for this week!

You will build a Neural Machine Translation (NMT) model to translate human readable dates (“25th of June, 2009”) into machine readable dates (“2009-06-25”). You will do this using an attention model, one of the most sophisticated sequence to sequence models.

您將建立一個神經機器翻譯(NMT)模型,將人類可讀日期(“2009年6月25日”)轉換爲機器可讀日期(“2009-06-25”)。您將使用注意模型來完成此操作,這是模型序列中最複雜的序列之一。

This notebook was produced together with NVIDIA’s Deep Learning Institute.

Let’s load all the packages you will need for this assignment.

from keras.layers import Bidirectional, Concatenate, Permute, Dot, Input, LSTM, Multiply
from keras.layers import RepeatVector, Dense, Activation, Lambda
from keras.optimizers import Adam
from keras.utils import to_categorical
from keras.models import load_model, Model
import keras.backend as K
import numpy as np

from faker import Faker
import random
from tqdm import tqdm
from babel.dates import format_date
from nmt_utils import *
import matplotlib.pyplot as plt
%matplotlib inline

1 - Translating human readable dates into machine readable dates

The model you will build here could be used to translate from one language to another, such as translating from English to Hindi. However, language translation requires massive datasets and usually takes days of training on GPUs. To give you a place to experiment with these models even without using massive datasets, we will instead use a simpler “date translation” task.

您將在此創建的模型可用於從一種語言翻譯爲另一種語言,如從英語翻譯爲印地語。 但是,語言翻譯需要大量的數據集,並且通常需要幾天的GPU訓練。 爲了讓您有機會嘗試這些模型,即使不使用海量數據集,我們也會使用更簡單的“日期轉換”任務。

The network will input a date written in a variety of possible formats (e.g. “the 29th of August 1958”, “03/30/1968”, “24 JUNE 1987”) and translate them into standardized, machine readable dates (e.g. “1958-08-29”, “1968-03-30”, “1987-06-24”). We will have the network learn to output dates in the common machine-readable format YYYY-MM-DD.

tqdm(讀音:taqadum, تقدّم)在阿拉伯語中的意思是進展。tqdm可以在長循環中添加一個進度提示信息,用戶只需要封裝任意的迭代器 tqdm (iterator),是一個快速、擴展性強的進度條工具庫

'''
nmt_utils.py

'''
import numpy as np
from faker import Faker
import random
from tqdm import tqdm
from babel.dates import format_date
from keras.utils import to_categorical
import keras.backend as K
import matplotlib.pyplot as plt

fake = Faker()
fake.seed(12345)
random.seed(12345)

# Define format of the data we would like to generate
FORMATS = ['short',
           'medium',
           'long',
           'full',
           'full',
           'full',
           'full',
           'full',
           'full',
           'full',
           'full',
           'full',
           'full',
           'd MMM YYY', 
           'd MMMM YYY',
           'dd MMM YYY',
           'd MMM, YYY',
           'd MMMM, YYY',
           'dd, MMM YYY',
           'd MM YY',
           'd MMMM YYY',
           'MMMM d YYY',
           'MMMM d, YYY',
           'dd.MM.YY']

# change this if you want it to work with another language
LOCALES = ['en_US']

def load_date():
    """
        Loads some fake dates 
        :returns: tuple containing human readable string, machine readable string, and date object
    """
    dt = fake.date_object()

    try:
        human_readable = format_date(dt, format=random.choice(FORMATS),  locale='en_US') # locale=random.choice(LOCALES))
        human_readable = human_readable.lower()
        human_readable = human_readable.replace(',','')
        machine_readable = dt.isoformat()

    except AttributeError as e:
        return None, None, None

    return human_readable, machine_readable, dt

def load_dataset(m):
    """
        Loads a dataset with m examples and vocabularies
        :m: the number of examples to generate
    """

    human_vocab = set()
    machine_vocab = set()
    dataset = []
    Tx = 30


    for i in tqdm(range(m)):
        h, m, _ = load_date()
        if h is not None:
            dataset.append((h, m))
            human_vocab.update(tuple(h))
            machine_vocab.update(tuple(m))

    human = dict(zip(sorted(human_vocab) + ['<unk>', '<pad>'], 
                     list(range(len(human_vocab) + 2))))
    inv_machine = dict(enumerate(sorted(machine_vocab)))
    machine = {v:k for k,v in inv_machine.items()}

    return dataset, human, machine, inv_machine

def preprocess_data(dataset, human_vocab, machine_vocab, Tx, Ty):

    X, Y = zip(*dataset)

    X = np.array([string_to_int(i, Tx, human_vocab) for i in X])
    Y = [string_to_int(t, Ty, machine_vocab) for t in Y]

    Xoh = np.array(list(map(lambda x: to_categorical(x, num_classes=len(human_vocab)), X)))
    Yoh = np.array(list(map(lambda x: to_categorical(x, num_classes=len(machine_vocab)), Y)))

    return X, np.array(Y), Xoh, Yoh

def string_to_int(string, length, vocab):
    """
    Converts all strings in the vocabulary into a list of integers representing the positions of the
    input string's characters in the "vocab"

    Arguments:
    string -- input string, e.g. 'Wed 10 Jul 2007'
    length -- the number of time steps you'd like, determines if the output will be padded or cut
    vocab -- vocabulary, dictionary used to index every character of your "string"

    Returns:
    rep -- list of integers (or '<unk>') (size = length) representing the position of the string's character in the vocabulary
    """

    #make lower to standardize
    string = string.lower()
    string = string.replace(',','')

    if len(string) > length:
        string = string[:length]

    rep = list(map(lambda x: vocab.get(x, '<unk>'), string))

    if len(string) < length:
        rep += [vocab['<pad>']] * (length - len(string))

    #print (rep)
    return rep


def int_to_string(ints, inv_vocab):
    """
    Output a machine readable list of characters based on a list of indexes in the machine's vocabulary

    Arguments:
    ints -- list of integers representing indexes in the machine's vocabulary
    inv_vocab -- dictionary mapping machine readable indexes to machine readable characters 

    Returns:
    l -- list of characters corresponding to the indexes of ints thanks to the inv_vocab mapping
    """

    l = [inv_vocab[i] for i in ints]
    return l


EXAMPLES = ['3 May 1979', '5 Apr 09', '20th February 2016', 'Wed 10 Jul 2007']

def run_example(model, input_vocabulary, inv_output_vocabulary, text):
    encoded = string_to_int(text, TIME_STEPS, input_vocabulary)
    prediction = model.predict(np.array([encoded]))
    prediction = np.argmax(prediction[0], axis=-1)
    return int_to_string(prediction, inv_output_vocabulary)

def run_examples(model, input_vocabulary, inv_output_vocabulary, examples=EXAMPLES):
    predicted = []
    for example in examples:
        predicted.append(''.join(run_example(model, input_vocabulary, inv_output_vocabulary, example)))
        print('input:', example)
        print('output:', predicted[-1])
    return predicted


def softmax(x, axis=1):
    """Softmax activation function.
    # Arguments
        x : Tensor.
        axis: Integer, axis along which the softmax normalization is applied.
    # Returns
        Tensor, output of softmax transformation.
    # Raises
        ValueError: In case `dim(x) == 1`.
    """
    ndim = K.ndim(x)
    if ndim == 2:
        return K.softmax(x)
    elif ndim > 2:
        e = K.exp(x - K.max(x, axis=axis, keepdims=True))
        s = K.sum(e, axis=axis, keepdims=True)
        return e / s
    else:
        raise ValueError('Cannot apply softmax to a tensor that is 1D')


def plot_attention_map(model, input_vocabulary, inv_output_vocabulary, text, n_s = 128, num = 6, Tx = 30, Ty = 10):
    """
    Plot the attention map.

    """
    attention_map = np.zeros((10, 30))
    Ty, Tx = attention_map.shape

    s0 = np.zeros((1, n_s))
    c0 = np.zeros((1, n_s))
    layer = model.layers[num]

    encoded = np.array(string_to_int(text, Tx, input_vocabulary)).reshape((1, 30))
    encoded = np.array(list(map(lambda x: to_categorical(x, num_classes=len(input_vocabulary)), encoded)))

    f = K.function(model.inputs, [layer.get_output_at(t) for t in range(Ty)])
    r = f([encoded, s0, c0])

    for t in range(Ty):
        for t_prime in range(Tx):
            attention_map[t][t_prime] = r[t][0,t_prime,0]

    # Normalize attention map
#     row_max = attention_map.max(axis=1)
#     attention_map = attention_map / row_max[:, None]

    prediction = model.predict([encoded, s0, c0])

    predicted_text = []
    for i in range(len(prediction)):
        predicted_text.append(int(np.argmax(prediction[i], axis=1)))

    predicted_text = list(predicted_text)
    predicted_text = int_to_string(predicted_text, inv_output_vocabulary)
    text_ = list(text)

    # get the lengths of the string
    input_length = len(text)
    output_length = Ty

    # Plot the attention_map
    plt.clf()
    f = plt.figure(figsize=(8, 8.5))
    ax = f.add_subplot(1, 1, 1)

    # add image
    i = ax.imshow(attention_map, interpolation='nearest', cmap='Blues')

    # add colorbar
    cbaxes = f.add_axes([0.2, 0, 0.6, 0.03])
    cbar = f.colorbar(i, cax=cbaxes, orientation='horizontal')
    cbar.ax.set_xlabel('Alpha value (Probability output of the "softmax")', labelpad=2)

    # add labels
    ax.set_yticks(range(output_length))
    ax.set_yticklabels(predicted_text[:output_length])

    ax.set_xticks(range(input_length))
    ax.set_xticklabels(text_[:input_length], rotation=45)

    ax.set_xlabel('Input Sequence')
    ax.set_ylabel('Output Sequence')

    # add grid and legend
    ax.grid()

    #f.show()

    return attention_map

1.1 - Dataset

We will train the model on a dataset of 10000 human readable dates and their equivalent, standardized, machine readable dates. Let’s run the following cells to load the dataset and print some examples.

m = 10000
dataset, human_vocab, machine_vocab, inv_machine_vocab = load_dataset(m)
100%|█████████████████████████████████████████████████████| 10000/10000 [00:00<00:00, 14157.20it/s]
print(dataset[:10]) # 0 到 9 不包含 10 
print(dataset[0])
print(type(dataset))
[('9 may 1998', '1998-05-09'), ('10.09.70', '1970-09-10'), ('4/28/90', '1990-04-28'), ('thursday january 26 1995', '1995-01-26'), ('monday march 7 1983', '1983-03-07'), ('sunday may 22 1988', '1988-05-22'), ('tuesday july 8 2008', '2008-07-08'), ('08 sep 1999', '1999-09-08'), ('1 jan 1981', '1981-01-01'), ('monday may 22 1995', '1995-05-22')]
('9 may 1998', '1998-05-09')
<class 'list'>

You’ve loaded:
- dataset: a list of tuples of (human readable date, machine readable date) 元組的 list
- human_vocab: a python dictionary mapping all characters used in the human readable dates to an integer-valued index 一個Python字典將人類可讀日期中使用的所有字符映射爲整數值索引
- machine_vocab: a python dictionary mapping all characters used in machine readable dates to an integer-valued index. These indices are not necessarily consistent with human_vocab.
- inv_machine_vocab: the inverse dictionary of machine_vocab, mapping from indices back to characters.

Let’s preprocess the data and map the raw text data into the index values. We will also use Tx=30 (which we assume is the maximum length of the human readable date; if we get a longer input, we would have to truncate it) and Ty=10 (since “YYYY-MM-DD” is 10 characters long).

我們預處理數據並將原始文本數據映射到索引值。 我們還將使用Tx = 30(我們假設它是人類可讀日期的最大長度;如果我們得到更長的輸入,我們將不得不截斷它)並且Ty = 10(因爲“YYYY-MM-DD”是10 長字符)。

Tx = 30
Ty = 10
X, Y, Xoh, Yoh = preprocess_data(dataset, human_vocab, machine_vocab, Tx, Ty)

print("X.shape:", X.shape)
print("Y.shape:", Y.shape)
print("Xoh.shape:", Xoh.shape)
print("Yoh.shape:", Yoh.shape)
X.shape: (10000, 30)
Y.shape: (10000, 10)
Xoh.shape: (10000, 30, 37)
Yoh.shape: (10000, 10, 11)

You now have:
- X: a processed version of the human readable dates in the training set, where each character is replaced by an index mapped to the character via human_vocab. Each date is further padded to Tx values with a special character (< pad >). X.shape = (m, Tx)
- Y: a processed version of the machine readable dates in the training set, where each character is replaced by the index it is mapped to in machine_vocab. You should have Y.shape = (m, Ty).
- Xoh: one-hot version of X, the “1” entry’s index is mapped to the character thanks to human_vocab. Xoh.shape = (m, Tx, len(human_vocab))
- Yoh: one-hot version of Y, the “1” entry’s index is mapped to the character thanks to machine_vocab. Yoh.shape = (m, Tx, len(machine_vocab)). Here, len(machine_vocab) = 11 since there are 11 characters (‘-’ as well as 0-9).

  • X: 訓練集中人類可讀日期的處理版本,其中每個字符由通過 human_vocab 映射到字符的索引替換。 每個日期用特殊字符()進一步填充到 Tx 值。 X.shape = (m, Tx)

  • Y: 訓練集中機器可讀日期的處理版本,其中每個字符都被其映射到machine_vocab中的索引替換。 你應該有Y.shape =(m,Ty)

  • Xoh:一個 one-hot 向量版本的X,由於human_vocab,“1”條目的索引被映射到字符。 Xoh.shape =(m,Tx,len(human_vocab))
  • Yoh: “Y”的one-hot 向量 版本,由於“machine_vocab”,“1”條目的索引被映射到字符。 Yoh.shape =(m,Tx,len(machine_vocab))。 這裏len(machine_vocab)= 11因爲有11個字符(’ - ‘和0-9)。

Lets also look at some examples of preprocessed training examples. Feel free to play with index in the cell below to navigate the dataset and see how source/target dates are preprocessed.

我們也看一些預處理訓練例子的例子。 隨意使用下面的單元格中的index來瀏覽數據集,並查看如何預處理源/目標日期。

index = 5
print("Source date:", dataset[index][0])
print("Target date:", dataset[index][1])
print()
print("Source after preprocessing (indices):", X[index])
print("Target after preprocessing (indices):", Y[index])
print()
print("Source after preprocessing (one-hot):", Xoh[index])
print("Target after preprocessing (one-hot):", Yoh[index])
Source date: sunday may 22 1988
Target date: 1988-05-22

Source after preprocessing (indices): [29 31 25 16 13 34  0 24 13 34  0  5  5  0  4 12 11 11 36 36 36 36 36 36
 36 36 36 36 36 36]
Target after preprocessing (indices): [ 2 10  9  9  0  1  6  0  3  3]

Source after preprocessing (one-hot): [[0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 ...
 [0. 0. 0. ... 0. 0. 1.]
 [0. 0. 0. ... 0. 0. 1.]
 [0. 0. 0. ... 0. 0. 1.]]
Target after preprocessing (one-hot): [[0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]
 [1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
 [1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]]

2 - Neural machine translation with attention

If you had to translate a book’s paragraph from French to English, you would not read the whole paragraph, then close the book and translate. Even during the translation process, you would read/re-read and focus on the parts of the French paragraph corresponding to the parts of the English you are writing down.

The attention mechanism tells a Neural Machine Translation model where it should pay attention to at any step.

如果你必須把一個書的段落從法文翻譯成英文,你不會閱讀整段,然後合上書本並翻譯。 即使在翻譯過程中,您也會閱讀/重讀,並專注於與您正在寫下的英語部分相對應的法語段落的部分。

注意力機制告訴神經機器翻譯模型,在任何一個步驟中應該注意它。

2.1 - Attention mechanism

In this part, you will implement the attention mechanism presented in the lecture videos. Here is a figure to remind you how the model works. The diagram on the left shows the attention model. The diagram on the right shows what one “Attention” step does to calculate the attention variables αt,t , which are used to compute the context variable contextt for each timestep in the output (t=1,,Ty ).(concatenate 串聯)

在這一部分,您將實現視頻中提出的注意力機制。 這是一個提醒你模型如何工作運行的圖。 左側的圖表顯示了注意力模型。 右圖顯示了“注意力”步驟計算注意力變量的方法αt,t , 用於計算上下文變量 contextt 用於輸出中的每個時間步(t=1,,Ty ).

這裏寫圖片描述

這裏寫圖片描述

Figure 1: Neural machine translation with attention

Here are some properties of the model that you may notice:

  • There are two separate LSTMs in this model (see diagram on the left). Because the one at the bottom of the picture is a Bi-directional LSTM and comes before the attention mechanism, we will call it pre-attention Bi-LSTM. The LSTM at the top of the diagram comes after the attention mechanism, so we will call it the post-attention LSTM. The pre-attention Bi-LSTM goes through Tx time steps; the post-attention LSTM goes through Ty time steps.

(在這個模型中有兩個單獨的 LSTM(見左圖)。 因爲圖片底部的一個是雙向 LSTM,並且在關注機制之前,我們將其稱爲注意力前的 Bi-LSTM。 圖表頂部的 LSTM出現在關注機制之後,因此我們將其稱爲注意力後的 LSTM。 預注意 Bi-LST 經過 Tx 時間步長; 後注意力 LSTM 經歷Ty 的時間步驟。)

  • The post-attention LSTM passes st,ct from one time step to the next. In the lecture videos, we were using only a basic RNN for the post-activation sequence model, so the state captured by the RNN output activations st . But since we are using an LSTM here, the LSTM has both the output activation st and the hidden cell state ct . However, unlike previous text generation examples (such as Dinosaurus in week 1), in this model the post-activation LSTM at time t does will not take the specific generated yt1 as input; it only takes st and ct as input. We have designed the model this way, because (unlike language generation where adjacent characters are highly correlated) there isn’t as strong a dependency between the previous character and the next character in a YYYY-MM-DD date.

後注意力 LSTM 從一個時間步到下一個時間通過 st,ct 。 在講座視頻中,我們僅使用了基本的 RNN 作爲激活後序列模型,因此 RNN 輸出激活捕獲的狀態爲 st . 但是由於我們在這裏使用 LSTM,因此 LSTM 同時具有輸出激活st 和隱藏單元狀態 ct . 然而,與以前的文本生成示例(如第1周的 Dinosaurus)不同,在此模型中,t 後的激活後 LSTM 不會將具體產生的 yt1 作爲輸入; 它只需要 st and ct a爲輸入。 我們以這種方式設計了模型,因爲(與鄰近字符高度相關的語言生成不同),在 YYYY-MM-DD 日期中,前一個字符與下一個字符之間的依賴性不強。

  • We use at=[at;at] to represent the concatenation of the activations of both the forward-direction and backward-directions of the pre-attention Bi-LSTM. 我們用 at=[at;at] 以表示預注意Bi-LSTM的前向和後向激活的連接。

  • The diagram on the right uses a RepeatVector node to copy st1 ’s value Tx times, and then Concatenation to concatenate st1 and at to compute et,t , which is then passed through a softmax to compute αt,t . We’ll explain how to use RepeatVector and Concatenation in Keras below.

Lets implement this model. You will start by implementing two functions: one_step_attention() and model().

1) one_step_attention(): At step t , given all the hidden states of the Bi-LSTM ([a<1>,a<2>,...,a<Tx>] ) and the previous hidden state of the second LSTM (s<t1> ), one_step_attention() will compute the attention weights ([α<t,1>,α<t,2>,...,α<t,Tx>] ) and output the context vector (see Figure 1 (right) for details):

(1)context<t>=t=0Txα<t,t>a<t>

Note that we are denoting the attention in this notebook contextt . In the lecture videos, the context was denoted ct , but here we are calling it contextt to avoid confusion with the (post-attention) LSTM’s internal memory cell variable, which is sometimes also denoted ct .

2) model(): Implements the entire model. It first runs the input through a Bi-LSTM to get back [a<1>,a<2>,...,a<Tx>] . Then, it calls one_step_attention() Ty times (for loop). At each iteration of this loop, it gives the computed context vector c<t> to the second LSTM, and runs the output of the LSTM through a dense layer with softmax activation to generate a prediction y^<t> .

CSDN: DenseNet 簡介:https://blog.csdn.net/bryan__/article/details/77337109

Exercise: Implement one_step_attention(). The function model() will call the layers in one_step_attention() Ty using a for-loop, and it is important that all Ty copies have the same weights. I.e., it should not re-initiaiize the weights every time. In other words, all Ty steps should have shared weights. Here’s how you can implement layers with shareable weights in Keras (它不應該每次重新初始化權重。 換句話說,所有 Ty 步驟應該具有共享權重。 以下是如何在Keras中實現可共享權重的圖層:):
1. Define the layer objects (as global variables for examples).
2. Call these objects when propagating the input.

We have defined the layers you need as global variables. Please run the following cells to create them. Please check the Keras documentation to make sure you understand what these layers are: RepeatVector(), Concatenate(), Dense(), Activation(), Dot().

# Defined shared layers as global variables
repeator = RepeatVector(Tx)
concatenator = Concatenate(axis=-1)
densor1 = Dense(10, activation = "tanh")
densor2 = Dense(1, activation = "relu")
activator = Activation(softmax, name='attention_weights') # We are using a custom softmax(axis = 1) loaded in this notebook
dotor = Dot(axes = 1)

Now you can use these layers to implement one_step_attention(). In order to propagate a Keras tensor object X through one of these layers, use layer(X) (or layer([X,Y]) if it requires multiple inputs.), e.g. densor(X) will propagate X through the Dense(1) layer defined above.

# GRADED FUNCTION: one_step_attention

def one_step_attention(a, s_prev):
    """
    Performs one step of attention: Outputs a context vector computed as a dot product of the attention weights
    "alphas" and the hidden states "a" of the Bi-LSTM.

    Arguments:
    a -- hidden state output of the Bi-LSTM, numpy-array of shape (m, Tx, 2*n_a)
    s_prev -- previous hidden state of the (post-attention) LSTM, numpy-array of shape (m, n_s)

    Returns:
    context -- context vector, input of the next (post-attetion) LSTM cell
    """

    ### START CODE HERE ###
    # Use repeator to repeat s_prev to be of shape (m, Tx, n_s) so that you can concatenate it with all hidden states "a" (≈ 1 line)
    s_prev = repeator(s_prev)
    # Use concatenator to concatenate a and s_prev on the last axis (≈ 1 line)
    concat = concatenator([a, s_prev])
    # Use densor1 to propagate concat through a small fully-connected neural network to compute the "intermediate energies" variable e. (≈1 lines)
    e = densor1(concat)
    # Use densor2 to propagate e through a small fully-connected neural network to compute the "energies" variable energies. (≈1 lines)
    energies = densor2(e)
    # Use "activator" on "energies" to compute the attention weights "alphas" (≈ 1 line)
    alphas = activator(energies)
    # Use dotor together with "alphas" and "a" to compute the context vector to be given to the next (post-attention) LSTM-cell (≈ 1 line)
    context = dotor([alphas, a])
    ### END CODE HERE ###

    return context

You will be able to check the expected output of one_step_attention() after you’ve coded the model() function.

Exercise: Implement model() as explained in figure 2 and the text above. Again, we have defined global layers that will share weights to be used in model().

n_a = 32
n_s = 64
post_activation_LSTM_cell = LSTM(n_s, return_state = True)
output_layer = Dense(len(machine_vocab), activation=softmax)

Now you can use these layers Ty times in a for loop to generate the outputs, and their parameters will not be reinitialized. You will have to carry out the following steps:

  1. Propagate the input into a Bidirectional LSTM
  2. Iterate for t=0,,Ty1 :

    1. Call one_step_attention() on [α<t,1>,α<t,2>,...,α<t,Tx>] and s<t1> to get the context vector context<t> .
    2. Give context<t> to the post-attention LSTM cell. Remember pass in the previous hidden-state st1 and cell-states ct1 of this LSTM using initial_state= [previous hidden state, previous cell state]. Get back the new hidden state s<t> and the new cell state c<t> .
    3. Apply a softmax layer to s<t> , get the output.
    4. Save the output by adding it to the list of outputs.
  3. Create your Keras model instance, it should have three inputs (“inputs”, s<0> and c<0> ) and output the list of “outputs”.

# GRADED FUNCTION: model

def model(Tx, Ty, n_a, n_s, human_vocab_size, machine_vocab_size):
    """
    Arguments:
    Tx -- length of the input sequence
    Ty -- length of the output sequence
    n_a -- hidden state size of the Bi-LSTM
    n_s -- hidden state size of the post-attention LSTM
    human_vocab_size -- size of the python dictionary "human_vocab"
    machine_vocab_size -- size of the python dictionary "machine_vocab"

    Returns:
    model -- Keras model instance
    """

    # Define the inputs of your model with a shape (Tx,)
    # Define s0 and c0, initial hidden state for the decoder LSTM of shape (n_s,)
    X = Input(shape=(Tx, human_vocab_size))
    s0 = Input(shape=(n_s,), name='s0')
    c0 = Input(shape=(n_s,), name='c0')
    s = s0
    c = c0

    # Initialize empty list of outputs
    outputs = []

    ### START CODE HERE ###

    # Step 1: Define your pre-attention Bi-LSTM. Remember to use return_sequences=True. (≈ 1 line)
    a = Bidirectional(LSTM(n_a, return_sequences=True), input_shape=(m, Tx, n_a*2))(X)
    print(a.shape)
    print(Ty)
    # Step 2: Iterate for Ty steps
    for t in range(Ty):

        # Step 2.A: Perform one step of the attention mechanism to get back the context vector at step t (≈ 1 line)
        context = one_step_attention(a, s)

        # Step 2.B: Apply the post-attention LSTM cell to the "context" vector.
        # Don't forget to pass: initial_state = [hidden state, cell state] (≈ 1 line)
        s, _, c = post_activation_LSTM_cell(context, initial_state = [s, c])

        # Step 2.C: Apply Dense layer to the hidden state output of the post-attention LSTM (≈ 1 line)
        out = output_layer(s)

        # Step 2.D: Append "out" to the "outputs" list (≈ 1 line)
        outputs.append(out)

    # Step 3: Create model instance taking three inputs and returning the list of outputs. (≈ 1 line)
    model = Model(inputs=[X,s0,c0],outputs=outputs)

    ### END CODE HERE ###

    return model

Run the following cell to create your model.

model = model(Tx, Ty, n_a, n_s, len(human_vocab), len(machine_vocab))
(?, ?, 64)
10

Let’s get a summary of the model to check if it matches the expected output.

model.summary()
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_2 (InputLayer)            (None, 30, 37)       0                                            
__________________________________________________________________________________________________
s0 (InputLayer)                 (None, 64)           0                                            
__________________________________________________________________________________________________
bidirectional_2 (Bidirectional) (None, 30, 64)       17920       input_2[0][0]                    
__________________________________________________________________________________________________
repeat_vector_1 (RepeatVector)  (None, 30, 64)       0           s0[0][0]                         
                                                                 lstm_1[0][0]                     
                                                                 lstm_1[1][0]                     
                                                                 lstm_1[2][0]                     
                                                                 lstm_1[3][0]                     
                                                                 lstm_1[4][0]                     
                                                                 lstm_1[5][0]                     
                                                                 lstm_1[6][0]                     
                                                                 lstm_1[7][0]                     
                                                                 lstm_1[8][0]                     
__________________________________________________________________________________________________
concatenate_1 (Concatenate)     (None, 30, 128)      0           bidirectional_2[0][0]            
                                                                 repeat_vector_1[1][0]            
                                                                 bidirectional_2[0][0]            
                                                                 repeat_vector_1[2][0]            
                                                                 bidirectional_2[0][0]            
                                                                 repeat_vector_1[3][0]            
                                                                 bidirectional_2[0][0]            
                                                                 repeat_vector_1[4][0]            
                                                                 bidirectional_2[0][0]            
                                                                 repeat_vector_1[5][0]            
                                                                 bidirectional_2[0][0]            
                                                                 repeat_vector_1[6][0]            
                                                                 bidirectional_2[0][0]            
                                                                 repeat_vector_1[7][0]            
                                                                 bidirectional_2[0][0]            
                                                                 repeat_vector_1[8][0]            
                                                                 bidirectional_2[0][0]            
                                                                 repeat_vector_1[9][0]            
                                                                 bidirectional_2[0][0]            
                                                                 repeat_vector_1[10][0]           
__________________________________________________________________________________________________
dense_1 (Dense)                 (None, 30, 10)       1290        concatenate_1[0][0]              
                                                                 concatenate_1[1][0]              
                                                                 concatenate_1[2][0]              
                                                                 concatenate_1[3][0]              
                                                                 concatenate_1[4][0]              
                                                                 concatenate_1[5][0]              
                                                                 concatenate_1[6][0]              
                                                                 concatenate_1[7][0]              
                                                                 concatenate_1[8][0]              
                                                                 concatenate_1[9][0]              
__________________________________________________________________________________________________
dense_2 (Dense)                 (None, 30, 1)        11          dense_1[0][0]                    
                                                                 dense_1[1][0]                    
                                                                 dense_1[2][0]                    
                                                                 dense_1[3][0]                    
                                                                 dense_1[4][0]                    
                                                                 dense_1[5][0]                    
                                                                 dense_1[6][0]                    
                                                                 dense_1[7][0]                    
                                                                 dense_1[8][0]                    
                                                                 dense_1[9][0]                    
__________________________________________________________________________________________________
attention_weights (Activation)  (None, 30, 1)        0           dense_2[0][0]                    
                                                                 dense_2[1][0]                    
                                                                 dense_2[2][0]                    
                                                                 dense_2[3][0]                    
                                                                 dense_2[4][0]                    
                                                                 dense_2[5][0]                    
                                                                 dense_2[6][0]                    
                                                                 dense_2[7][0]                    
                                                                 dense_2[8][0]                    
                                                                 dense_2[9][0]                    
__________________________________________________________________________________________________
dot_1 (Dot)                     (None, 1, 64)        0           attention_weights[0][0]          
                                                                 bidirectional_2[0][0]            
                                                                 attention_weights[1][0]          
                                                                 bidirectional_2[0][0]            
                                                                 attention_weights[2][0]          
                                                                 bidirectional_2[0][0]            
                                                                 attention_weights[3][0]          
                                                                 bidirectional_2[0][0]            
                                                                 attention_weights[4][0]          
                                                                 bidirectional_2[0][0]            
                                                                 attention_weights[5][0]          
                                                                 bidirectional_2[0][0]            
                                                                 attention_weights[6][0]          
                                                                 bidirectional_2[0][0]            
                                                                 attention_weights[7][0]          
                                                                 bidirectional_2[0][0]            
                                                                 attention_weights[8][0]          
                                                                 bidirectional_2[0][0]            
                                                                 attention_weights[9][0]          
                                                                 bidirectional_2[0][0]            
__________________________________________________________________________________________________
c0 (InputLayer)                 (None, 64)           0                                            
__________________________________________________________________________________________________
lstm_1 (LSTM)                   [(None, 64), (None,  33024       dot_1[0][0]                      
                                                                 s0[0][0]                         
                                                                 c0[0][0]                         
                                                                 dot_1[1][0]                      
                                                                 lstm_1[0][0]                     
                                                                 lstm_1[0][2]                     
                                                                 dot_1[2][0]                      
                                                                 lstm_1[1][0]                     
                                                                 lstm_1[1][2]                     
                                                                 dot_1[3][0]                      
                                                                 lstm_1[2][0]                     
                                                                 lstm_1[2][2]                     
                                                                 dot_1[4][0]                      
                                                                 lstm_1[3][0]                     
                                                                 lstm_1[3][2]                     
                                                                 dot_1[5][0]                      
                                                                 lstm_1[4][0]                     
                                                                 lstm_1[4][2]                     
                                                                 dot_1[6][0]                      
                                                                 lstm_1[5][0]                     
                                                                 lstm_1[5][2]                     
                                                                 dot_1[7][0]                      
                                                                 lstm_1[6][0]                     
                                                                 lstm_1[6][2]                     
                                                                 dot_1[8][0]                      
                                                                 lstm_1[7][0]                     
                                                                 lstm_1[7][2]                     
                                                                 dot_1[9][0]                      
                                                                 lstm_1[8][0]                     
                                                                 lstm_1[8][2]                     
__________________________________________________________________________________________________
dense_3 (Dense)                 (None, 11)           715         lstm_1[0][0]                     
                                                                 lstm_1[1][0]                     
                                                                 lstm_1[2][0]                     
                                                                 lstm_1[3][0]                     
                                                                 lstm_1[4][0]                     
                                                                 lstm_1[5][0]                     
                                                                 lstm_1[6][0]                     
                                                                 lstm_1[7][0]                     
                                                                 lstm_1[8][0]                     
                                                                 lstm_1[9][0]                     
==================================================================================================
Total params: 52,960
Trainable params: 52,960
Non-trainable params: 0
__________________________________________________________________________________________________

Expected Output:

Here is the summary you should see

**Total params:** 185,484
**Trainable params:** 185,484
**Non-trainable params:** 0
**bidirectional_1’s output shape ** (None, 30, 128)
**repeat_vector_1’s output shape ** (None, 30, 128)
**concatenate_1’s output shape ** (None, 30, 256)
**attention_weights’s output shape ** (None, 30, 1)
**dot_1’s output shape ** (None, 1, 128)
**dense_2’s output shape ** (None, 11)

最後得出的相關參數,與預期的參數不同,要看下爲啥。

As usual, after creating your model in Keras, you need to compile it and define what loss, optimizer and metrics your are want to use.像往常一樣,在Keras中創建模型後,您需要編譯它並定義要使用的損失,優化程序和指標。 Compile your model using categorical_crossentropy loss, a custom Adam optimizer (learning rate = 0.005, β1=0.9 , β2=0.999 , decay = 0.01) and ['accuracy'] metrics:

### START CODE HERE ### (≈2 lines)
opt = Adam(lr=0.005, beta_1=0.9, beta_2=0.999, decay=0.01)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
### END CODE HERE ###

The last step is to define all your inputs and outputs to fit the model:
- You already have X of shape (m=10000,Tx=30) containing the training examples.
- You need to create s0 and c0 to initialize your post_activation_LSTM_cell with 0s.
- Given the model() you coded, you need the “outputs” to be a list of 11 elements of shape (m, T_y). So that: outputs[i][0], ..., outputs[i][Ty] represent the true labels (characters) corresponding to the ith training example (X[i]). More generally, outputs[i][j] is the true label of the jth character in the ith training example.

s0 = np.zeros((m, n_s))
c0 = np.zeros((m, n_s))
outputs = list(Yoh.swapaxes(0,1))

Let’s now fit the model and run it for one epoch.

model.fit([Xoh, s0, c0], outputs, epochs=1, batch_size=100)
Epoch 1/1
 1600/10000 [===>..........................] - ETA: 18:21 - loss: 23.9635 - dense_3_loss_1: 2.4029 - dense_3_loss_2: 2.3787 - dense_3_loss_3: 2.3947 - dense_3_loss_4: 2.3965 - dense_3_loss_5: 2.4078 - dense_3_loss_6: 2.3760 - dense_3_loss_7: 2.4009 - dense_3_loss_8: 2.4096 - dense_3_loss_9: 2.3987 - dense_3_loss_10: 2.3977 - dense_3_acc_1: 0.0000e+00 - dense_3_acc_2: 0.0900 - dense_3_acc_3: 0.1000 - dense_3_acc_4: 0.0800 - dense_3_acc_5: 0.0000e+00 - dense_3_acc_6: 0.0100 - dense_3_acc_7: 0.0500 - dense_3_acc_8: 0.0000e+00 - dense_3_acc_9: 0.0000e+00 - dense_3_acc_10: 0.130 - ETA: 9:10 - loss: 23.7224 - dense_3_loss_1: 2.3929 - dense_3_loss_2: 2.3608 - dense_3_loss_3: 2.3881 - dense_3_loss_4: 2.4066 - dense_3_loss_5: 2.3475 - dense_3_loss_6: 2.3221 - dense_3_loss_7: 2.4053 - dense_3_loss_8: 2.3386 - dense_3_loss_9: 2.3616 - dense_3_loss_10: 2.3989 - dense_3_acc_1: 0.0000e+00 - dense_3_acc_2: 0.1700 - dense_3_acc_3: 0.1400 - dense_3_acc_4: 0.0700 - dense_3_acc_5: 0.1350 - dense_3_acc_6: 0.2750 - dense_3_acc_7: 0.0700 - dense_3_acc_8: 0.1050 - dense_3_acc_9: 0.1450 - dense_3_acc_10: 0.1000            - ETA: 6:06 - loss: 23.4463 - dense_3_loss_1: 2.3844 - dense_3_loss_2: 2.3363 - dense_3_loss_3: 2.3719 - dense_3_loss_4: 2.4187 - dense_3_loss_5: 2.2777 - dense_3_loss_6: 2.2507 - dense_3_loss_7: 2.4078 - dense_3_loss_8: 2.2546 - dense_3_loss_9: 2.3272 - dense_3_loss_10: 2.4170 - dense_3_acc_1: 0.0000e+00 - dense_3_acc_2: 0.2167 - dense_3_acc_3: 0.1467 - dense_3_acc_4: 0.0733 - dense_3_acc_5: 0.1700 - dense_3_acc_6: 0.3700 - dense_3_acc_7: 0.0767 - dense_3_acc_8: 0.1267 - dense_3_acc_9: 0.1833 - dense_3_acc_10: 0.10 - ETA: 4:34 - loss: 23.1588 - dense_3_loss_1: 2.3738 - dense_3_loss_2: 2.3104 - dense_3_loss_3: 2.3632 - dense_3_loss_4: 2.4468 - dense_3_loss_5: 2.1941 - dense_3_loss_6: 2.1623 - dense_3_loss_7: 2.4163 - dense_3_loss_8: 2.1514 - dense_3_loss_9: 2.2885 - dense_3_loss_10: 2.4520 - dense_3_acc_1: 0.0000e+00 - dense_3_acc_2: 0.2225 - dense_3_acc_3: 0.1325 - dense_3_acc_4: 0.0650 - dense_3_acc_5: 0.2050 - dense_3_acc_6: 0.4175 - dense_3_acc_7: 0.0725 - dense_3_acc_8: 0.1375 - dense_3_acc_9: 0.2100 - dense_3_acc_10: 0.10 - ETA: 3:39 - loss: 22.9440 - dense_3_loss_1: 2.3621 - dense_3_loss_2: 2.2798 - dense_3_loss_3: 2.3571 - dense_3_loss_4: 2.4936 - dense_3_loss_5: 2.0867 - dense_3_loss_6: 2.0559 - dense_3_loss_7: 2.4907 - dense_3_loss_8: 2.0182 - dense_3_loss_9: 2.2603 - dense_3_loss_10: 2.5396 - dense_3_acc_1: 0.0000e+00 - dense_3_acc_2: 0.2200 - dense_3_acc_3: 0.1280 - dense_3_acc_4: 0.0580 - dense_3_acc_5: 0.2860 - dense_3_acc_6: 0.3960 - dense_3_acc_7: 0.0620 - dense_3_acc_8: 0.2360 - dense_3_acc_9: 0.1940 - dense_3_acc_10: 0.08 - ETA: 3:02 - loss: 22.7903 - dense_3_loss_1: 2.3420 - dense_3_loss_2: 2.2622 - dense_3_loss_3: 2.3793 - dense_3_loss_4: 2.5425 - dense_3_loss_5: 1.9612 - dense_3_loss_6: 1.9670 - dense_3_loss_7: 2.5650 - dense_3_loss_8: 1.8697 - dense_3_loss_9: 2.2452 - dense_3_loss_10: 2.6562 - dense_3_acc_1: 0.0000e+00 - dense_3_acc_2: 0.1833 - dense_3_acc_3: 0.1067 - dense_3_acc_4: 0.0483 - dense_3_acc_5: 0.4050 - dense_3_acc_6: 0.3300 - dense_3_acc_7: 0.0517 - dense_3_acc_8: 0.3633 - dense_3_acc_9: 0.1617 - dense_3_acc_10: 0.07 - ETA: 2:35 - loss: 22.6810 - dense_3_loss_1: 2.3252 - dense_3_loss_2: 2.2463 - dense_3_loss_3: 2.3815 - dense_3_loss_4: 2.5958 - dense_3_loss_5: 1.8617 - dense_3_loss_6: 1.9110 - dense_3_loss_7: 2.6395 - dense_3_loss_8: 1.7550 - dense_3_loss_9: 2.2203 - dense_3_loss_10: 2.7448 - dense_3_acc_1: 0.0000e+00 - dense_3_acc_2: 0.1571 - dense_3_acc_3: 0.0914 - dense_3_acc_4: 0.0414 - dense_3_acc_5: 0.4900 - dense_3_acc_6: 0.2829 - dense_3_acc_7: 0.0443 - dense_3_acc_8: 0.4543 - dense_3_acc_9: 0.1386 - dense_3_acc_10: 0.06 - ETA: 2:15 - loss: 22.5816 - dense_3_loss_1: 2.3082 - dense_3_loss_2: 2.2404 - dense_3_loss_3: 2.3993 - dense_3_loss_4: 2.6183 - dense_3_loss_5: 1.7960 - dense_3_loss_6: 1.8820 - dense_3_loss_7: 2.6622 - dense_3_loss_8: 1.6804 - dense_3_loss_9: 2.2054 - dense_3_loss_10: 2.7894 - dense_3_acc_1: 0.0000e+00 - dense_3_acc_2: 0.1375 - dense_3_acc_3: 0.0800 - dense_3_acc_4: 0.0362 - dense_3_acc_5: 0.5538 - dense_3_acc_6: 0.2475 - dense_3_acc_7: 0.0388 - dense_3_acc_8: 0.5225 - dense_3_acc_9: 0.1212 - dense_3_acc_10: 0.05 - ETA: 2:00 - loss: 22.4720 - dense_3_loss_1: 2.2964 - dense_3_loss_2: 2.2337 - dense_3_loss_3: 2.4017 - dense_3_loss_4: 2.6215 - dense_3_loss_5: 1.7603 - dense_3_loss_6: 1.8735 - dense_3_loss_7: 2.6573 - dense_3_loss_8: 1.6418 - dense_3_loss_9: 2.1875 - dense_3_loss_10: 2.7983 - dense_3_acc_1: 0.0000e+00 - dense_3_acc_2: 0.1222 - dense_3_acc_3: 0.0711 - dense_3_acc_4: 0.0322 - dense_3_acc_5: 0.6033 - dense_3_acc_6: 0.2200 - dense_3_acc_7: 0.0344 - dense_3_acc_8: 0.5756 - dense_3_acc_9: 0.1078 - dense_3_acc_10: 0.04 - ETA: 1:48 - loss: 22.3729 - dense_3_loss_1: 2.2867 - dense_3_loss_2: 2.2260 - dense_3_loss_3: 2.3951 - dense_3_loss_4: 2.6205 - dense_3_loss_5: 1.7405 - dense_3_loss_6: 1.8725 - dense_3_loss_7: 2.6436 - dense_3_loss_8: 1.6236 - dense_3_loss_9: 2.1638 - dense_3_loss_10: 2.8005 - dense_3_acc_1: 1.0000e-03 - dense_3_acc_2: 0.1100 - dense_3_acc_3: 0.0640 - dense_3_acc_4: 0.0290 - dense_3_acc_5: 0.6430 - dense_3_acc_6: 0.1980 - dense_3_acc_7: 0.0310 - dense_3_acc_8: 0.6180 - dense_3_acc_9: 0.0970 - dense_3_acc_10: 0.04 - ETA: 1:38 - loss: 22.3013 - dense_3_loss_1: 2.2754 - dense_3_loss_2: 2.2213 - dense_3_loss_3: 2.3939 - dense_3_loss_4: 2.6179 - dense_3_loss_5: 1.7298 - dense_3_loss_6: 1.8724 - dense_3_loss_7: 2.6352 - dense_3_loss_8: 1.6166 - dense_3_loss_9: 2.1458 - dense_3_loss_10: 2.7930 - dense_3_acc_1: 0.0536 - dense_3_acc_2: 0.1000 - dense_3_acc_3: 0.0582 - dense_3_acc_4: 0.0264 - dense_3_acc_5: 0.6755 - dense_3_acc_6: 0.1800 - dense_3_acc_7: 0.0282 - dense_3_acc_8: 0.6527 - dense_3_acc_9: 0.0882 - dense_3_acc_10: 0.0391   - ETA: 1:29 - loss: 22.2300 - dense_3_loss_1: 2.2661 - dense_3_loss_2: 2.2121 - dense_3_loss_3: 2.3872 - dense_3_loss_4: 2.6116 - dense_3_loss_5: 1.7213 - dense_3_loss_6: 1.8700 - dense_3_loss_7: 2.6358 - dense_3_loss_8: 1.6122 - dense_3_loss_9: 2.1320 - dense_3_loss_10: 2.7816 - dense_3_acc_1: 0.0942 - dense_3_acc_2: 0.0917 - dense_3_acc_3: 0.0533 - dense_3_acc_4: 0.0242 - dense_3_acc_5: 0.7025 - dense_3_acc_6: 0.1650 - dense_3_acc_7: 0.0258 - dense_3_acc_8: 0.6817 - dense_3_acc_9: 0.0808 - dense_3_acc_10: 0.03 - ETA: 1:22 - loss: 22.1636 - dense_3_loss_1: 2.2566 - dense_3_loss_2: 2.2016 - dense_3_loss_3: 2.3809 - dense_3_loss_4: 2.6153 - dense_3_loss_5: 1.7127 - dense_3_loss_6: 1.8637 - dense_3_loss_7: 2.6287 - dense_3_loss_8: 1.6072 - dense_3_loss_9: 2.1149 - dense_3_loss_10: 2.7820 - dense_3_acc_1: 0.1262 - dense_3_acc_2: 0.1069 - dense_3_acc_3: 0.0492 - dense_3_acc_4: 0.0223 - dense_3_acc_5: 0.7254 - dense_3_acc_6: 0.1523 - dense_3_acc_7: 0.0238 - dense_3_acc_8: 0.7062 - dense_3_acc_9: 0.0746 - dense_3_acc_10: 0.03 - ETA: 1:16 - loss: 22.1060 - dense_3_loss_1: 2.2487 - dense_3_loss_2: 2.1877 - dense_3_loss_3: 2.3713 - dense_3_loss_4: 2.6224 - dense_3_loss_5: 1.7024 - dense_3_loss_6: 1.8524 - dense_3_loss_7: 2.6383 - dense_3_loss_8: 1.5996 - dense_3_loss_9: 2.1032 - dense_3_loss_10: 2.7801 - dense_3_acc_1: 0.1336 - dense_3_acc_2: 0.1293 - dense_3_acc_3: 0.0593 - dense_3_acc_4: 0.0207 - dense_3_acc_5: 0.7450 - dense_3_acc_6: 0.1414 - dense_3_acc_7: 0.0221 - dense_3_acc_8: 0.7271 - dense_3_acc_9: 0.0693 - dense_3_acc_10: 0.03 - ETA: 1:10 - loss: 22.0454 - dense_3_loss_1: 2.2402 - dense_3_loss_2: 2.1726 - dense_3_loss_3: 2.3656 - dense_3_loss_4: 2.6359 - dense_3_loss_5: 1.6898 - dense_3_loss_6: 1.8380 - dense_3_loss_7: 2.6434 - dense_3_loss_8: 1.5886 - dense_3_loss_9: 2.0920 - dense_3_loss_10: 2.7794 - dense_3_acc_1: 0.1313 - dense_3_acc_2: 0.1447 - dense_3_acc_3: 0.0673 - dense_3_acc_4: 0.0273 - dense_3_acc_5: 0.7613 - dense_3_acc_6: 0.1320 - dense_3_acc_7: 0.0207 - dense_3_acc_8: 0.7453 - dense_3_acc_9: 0.0647 - dense_3_acc_10: 0.02 - ETA: 1:06 - loss: 21.9791 - dense_3_loss_1: 2.2314 - dense_3_loss_2: 2.1554 - dense_3_loss_3: 2.3618 - dense_3_loss_4: 2.6453 - dense_3_loss_5: 1.6744 - dense_3_loss_6: 1.8184 - dense_3_loss_7: 2.6523 - dense_3_loss_8: 1.5741 - dense_3_loss_9: 2.0772 - dense_3_loss_10: 2.7887 - dense_3_acc_1: 0.1238 - dense_3_acc_2: 0.1569 - dense_3_acc_3: 0.0731 - dense_3_acc_4: 0.0350 - dense_3_acc_5: 0.7244 - dense_3_acc_6: 0.1269 - dense_3_acc_7: 0.0194 - dense_3_acc_8: 0.7612 - dense_3_acc_9: 0.0606 - dense_3_acc_10: 0.0269 3200/10000 [========>.....................] - ETA: 1:02 - loss: 21.9262 - dense_3_loss_1: 2.2247 - dense_3_loss_2: 2.1354 - dense_3_loss_3: 2.3549 - dense_3_loss_4: 2.6645 - dense_3_loss_5: 1.6578 - dense_3_loss_6: 1.8005 - dense_3_loss_7: 2.6595 - dense_3_loss_8: 1.5577 - dense_3_loss_9: 2.0756 - dense_3_loss_10: 2.7956 - dense_3_acc_1: 0.1165 - dense_3_acc_2: 0.1712 - dense_3_acc_3: 0.0794 - dense_3_acc_4: 0.0371 - dense_3_acc_5: 0.6824 - dense_3_acc_6: 0.1306 - dense_3_acc_7: 0.0182 - dense_3_acc_8: 0.7753 - dense_3_acc_9: 0.0571 - dense_3_acc_10: 0.02 - ETA: 58s - loss: 21.8677 - dense_3_loss_1: 2.2190 - dense_3_loss_2: 2.1134 - dense_3_loss_3: 2.3466 - dense_3_loss_4: 2.6801 - dense_3_loss_5: 1.6398 - dense_3_loss_6: 1.7869 - dense_3_loss_7: 2.6662 - dense_3_loss_8: 1.5396 - dense_3_loss_9: 2.0746 - dense_3_loss_10: 2.8014 - dense_3_acc_1: 0.1128 - dense_3_acc_2: 0.1861 - dense_3_acc_3: 0.0861 - dense_3_acc_4: 0.0406 - dense_3_acc_5: 0.6578 - dense_3_acc_6: 0.1233 - dense_3_acc_7: 0.0172 - dense_3_acc_8: 0.7878 - dense_3_acc_9: 0.0539 - dense_3_acc_10: 0.0239 - ETA: 54s - loss: 21.8055 - dense_3_loss_1: 2.2080 - dense_3_loss_2: 2.0939 - dense_3_loss_3: 2.3493 - dense_3_loss_4: 2.6888 - dense_3_loss_5: 1.6215 - dense_3_loss_6: 1.7738 - dense_3_loss_7: 2.6749 - dense_3_loss_8: 1.5212 - dense_3_loss_9: 2.0738 - dense_3_loss_10: 2.8004 - dense_3_acc_1: 0.1137 - dense_3_acc_2: 0.1916 - dense_3_acc_3: 0.0905 - dense_3_acc_4: 0.0453 - dense_3_acc_5: 0.6758 - dense_3_acc_6: 0.1168 - dense_3_acc_7: 0.0163 - dense_3_acc_8: 0.7989 - dense_3_acc_9: 0.0511 - dense_3_acc_10: 0.022 - ETA: 51s - loss: 21.7523 - dense_3_loss_1: 2.1984 - dense_3_loss_2: 2.0732 - dense_3_loss_3: 2.3461 - dense_3_loss_4: 2.6946 - dense_3_loss_5: 1.6038 - dense_3_loss_6: 1.7637 - dense_3_loss_7: 2.6877 - dense_3_loss_8: 1.5040 - dense_3_loss_9: 2.0733 - dense_3_loss_10: 2.8077 - dense_3_acc_1: 0.1080 - dense_3_acc_2: 0.1995 - dense_3_acc_3: 0.0975 - dense_3_acc_4: 0.0430 - dense_3_acc_5: 0.6920 - dense_3_acc_6: 0.1110 - dense_3_acc_7: 0.0155 - dense_3_acc_8: 0.8090 - dense_3_acc_9: 0.0485 - dense_3_acc_10: 0.021 - ETA: 49s - loss: 21.7055 - dense_3_loss_1: 2.1916 - dense_3_loss_2: 2.0520 - dense_3_loss_3: 2.3372 - dense_3_loss_4: 2.7121 - dense_3_loss_5: 1.5876 - dense_3_loss_6: 1.7581 - dense_3_loss_7: 2.6958 - dense_3_loss_8: 1.4892 - dense_3_loss_9: 2.0672 - dense_3_loss_10: 2.8146 - dense_3_acc_1: 0.1029 - dense_3_acc_2: 0.2052 - dense_3_acc_3: 0.1033 - dense_3_acc_4: 0.0410 - dense_3_acc_5: 0.7067 - dense_3_acc_6: 0.1057 - dense_3_acc_7: 0.0148 - dense_3_acc_8: 0.8181 - dense_3_acc_9: 0.0462 - dense_3_acc_10: 0.020 - ETA: 46s - loss: 21.6644 - dense_3_loss_1: 2.1800 - dense_3_loss_2: 2.0302 - dense_3_loss_3: 2.3368 - dense_3_loss_4: 2.7226 - dense_3_loss_5: 1.5732 - dense_3_loss_6: 1.7559 - dense_3_loss_7: 2.7061 - dense_3_loss_8: 1.4776 - dense_3_loss_9: 2.0637 - dense_3_loss_10: 2.8185 - dense_3_acc_1: 0.0982 - dense_3_acc_2: 0.2277 - dense_3_acc_3: 0.1068 - dense_3_acc_4: 0.0391 - dense_3_acc_5: 0.7200 - dense_3_acc_6: 0.1009 - dense_3_acc_7: 0.0141 - dense_3_acc_8: 0.8264 - dense_3_acc_9: 0.0441 - dense_3_acc_10: 0.019 - ETA: 44s - loss: 21.6099 - dense_3_loss_1: 2.1730 - dense_3_loss_2: 2.0083 - dense_3_loss_3: 2.3291 - dense_3_loss_4: 2.7332 - dense_3_loss_5: 1.5605 - dense_3_loss_6: 1.7561 - dense_3_loss_7: 2.7041 - dense_3_loss_8: 1.4691 - dense_3_loss_9: 2.0594 - dense_3_loss_10: 2.8172 - dense_3_acc_1: 0.0939 - dense_3_acc_2: 0.2439 - dense_3_acc_3: 0.1139 - dense_3_acc_4: 0.0374 - dense_3_acc_5: 0.7322 - dense_3_acc_6: 0.0965 - dense_3_acc_7: 0.0135 - dense_3_acc_8: 0.8339 - dense_3_acc_9: 0.0422 - dense_3_acc_10: 0.018 - ETA: 42s - loss: 21.5564 - dense_3_loss_1: 2.1672 - dense_3_loss_2: 1.9859 - dense_3_loss_3: 2.3206 - dense_3_loss_4: 2.7406 - dense_3_loss_5: 1.5491 - dense_3_loss_6: 1.7584 - dense_3_loss_7: 2.7008 - dense_3_loss_8: 1.4635 - dense_3_loss_9: 2.0588 - dense_3_loss_10: 2.8114 - dense_3_acc_1: 0.0900 - dense_3_acc_2: 0.2579 - dense_3_acc_3: 0.1179 - dense_3_acc_4: 0.0358 - dense_3_acc_5: 0.7433 - dense_3_acc_6: 0.0925 - dense_3_acc_7: 0.0129 - dense_3_acc_8: 0.8408 - dense_3_acc_9: 0.0404 - dense_3_acc_10: 0.017 - ETA: 40s - loss: 21.5014 - dense_3_loss_1: 2.1610 - dense_3_loss_2: 1.9620 - dense_3_loss_3: 2.3098 - dense_3_loss_4: 2.7496 - dense_3_loss_5: 1.5394 - dense_3_loss_6: 1.7598 - dense_3_loss_7: 2.6993 - dense_3_loss_8: 1.4601 - dense_3_loss_9: 2.0586 - dense_3_loss_10: 2.8017 - dense_3_acc_1: 0.0864 - dense_3_acc_2: 0.2716 - dense_3_acc_3: 0.1272 - dense_3_acc_4: 0.0380 - dense_3_acc_5: 0.7536 - dense_3_acc_6: 0.0888 - dense_3_acc_7: 0.0124 - dense_3_acc_8: 0.8472 - dense_3_acc_9: 0.0388 - dense_3_acc_10: 0.017 - ETA: 38s - loss: 21.4546 - dense_3_loss_1: 2.1529 - dense_3_loss_2: 1.9355 - dense_3_loss_3: 2.3006 - dense_3_loss_4: 2.7661 - dense_3_loss_5: 1.5307 - dense_3_loss_6: 1.7592 - dense_3_loss_7: 2.6986 - dense_3_loss_8: 1.4581 - dense_3_loss_9: 2.0569 - dense_3_loss_10: 2.7961 - dense_3_acc_1: 0.0831 - dense_3_acc_2: 0.2862 - dense_3_acc_3: 0.1327 - dense_3_acc_4: 0.0396 - dense_3_acc_5: 0.7631 - dense_3_acc_6: 0.0854 - dense_3_acc_7: 0.0119 - dense_3_acc_8: 0.8531 - dense_3_acc_9: 0.0373 - dense_3_acc_10: 0.016 - ETA: 36s - loss: 21.3970 - dense_3_loss_1: 2.1449 - dense_3_loss_2: 1.9083 - dense_3_loss_3: 2.2955 - dense_3_loss_4: 2.7748 - dense_3_loss_5: 1.5214 - dense_3_loss_6: 1.7583 - dense_3_loss_7: 2.6959 - dense_3_loss_8: 1.4565 - dense_3_loss_9: 2.0545 - dense_3_loss_10: 2.7868 - dense_3_acc_1: 0.0800 - dense_3_acc_2: 0.3000 - dense_3_acc_3: 0.1348 - dense_3_acc_4: 0.0422 - dense_3_acc_5: 0.7719 - dense_3_acc_6: 0.0822 - dense_3_acc_7: 0.0115 - dense_3_acc_8: 0.8585 - dense_3_acc_9: 0.0359 - dense_3_acc_10: 0.015 - ETA: 35s - loss: 21.3418 - dense_3_loss_1: 2.1344 - dense_3_loss_2: 1.8798 - dense_3_loss_3: 2.2927 - dense_3_loss_4: 2.7826 - dense_3_loss_5: 1.5105 - dense_3_loss_6: 1.7565 - dense_3_loss_7: 2.6963 - dense_3_loss_8: 1.4552 - dense_3_loss_9: 2.0504 - dense_3_loss_10: 2.7834 - dense_3_acc_1: 0.0771 - dense_3_acc_2: 0.3146 - dense_3_acc_3: 0.1375 - dense_3_acc_4: 0.0446 - dense_3_acc_5: 0.7800 - dense_3_acc_6: 0.0793 - dense_3_acc_7: 0.0111 - dense_3_acc_8: 0.8636 - dense_3_acc_9: 0.0346 - dense_3_acc_10: 0.015 - ETA: 33s - loss: 21.3049 - dense_3_loss_1: 2.1313 - dense_3_loss_2: 1.8578 - dense_3_loss_3: 2.2853 - dense_3_loss_4: 2.7981 - dense_3_loss_5: 1.4978 - dense_3_loss_6: 1.7549 - dense_3_loss_7: 2.6954 - dense_3_loss_8: 1.4535 - dense_3_loss_9: 2.0443 - dense_3_loss_10: 2.7866 - dense_3_acc_1: 0.0745 - dense_3_acc_2: 0.3228 - dense_3_acc_3: 0.1421 - dense_3_acc_4: 0.0452 - dense_3_acc_5: 0.7876 - dense_3_acc_6: 0.0766 - dense_3_acc_7: 0.0107 - dense_3_acc_8: 0.8683 - dense_3_acc_9: 0.0334 - dense_3_acc_10: 0.014 - ETA: 32s - loss: 21.2452 - dense_3_loss_1: 2.1204 - dense_3_loss_2: 1.8326 - dense_3_loss_3: 2.2781 - dense_3_loss_4: 2.8053 - dense_3_loss_5: 1.4847 - dense_3_loss_6: 1.7534 - dense_3_loss_7: 2.6939 - dense_3_loss_8: 1.4519 - dense_3_loss_9: 2.0381 - dense_3_loss_10: 2.7866 - dense_3_acc_1: 0.0720 - dense_3_acc_2: 0.3350 - dense_3_acc_3: 0.1457 - dense_3_acc_4: 0.0460 - dense_3_acc_5: 0.7947 - dense_3_acc_6: 0.0740 - dense_3_acc_7: 0.0103 - dense_3_acc_8: 0.8727 - dense_3_acc_9: 0.0323 - dense_3_acc_10: 0.014 - ETA: 31s - loss: 21.1863 - dense_3_loss_1: 2.1080 - dense_3_loss_2: 1.8088 - dense_3_loss_3: 2.2693 - dense_3_loss_4: 2.8143 - dense_3_loss_5: 1.4717 - dense_3_loss_6: 1.7502 - dense_3_loss_7: 2.6961 - dense_3_loss_8: 1.4503 - dense_3_loss_9: 2.0325 - dense_3_loss_10: 2.7852 - dense_3_acc_1: 0.0697 - dense_3_acc_2: 0.3471 - dense_3_acc_3: 0.1506 - dense_3_acc_4: 0.0455 - dense_3_acc_5: 0.8013 - dense_3_acc_6: 0.0716 - dense_3_acc_7: 0.0100 - dense_3_acc_8: 0.8768 - dense_3_acc_9: 0.0345 - dense_3_acc_10: 0.016 - ETA: 30s - loss: 21.1332 - dense_3_loss_1: 2.0980 - dense_3_loss_2: 1.7886 - dense_3_loss_3: 2.2587 - dense_3_loss_4: 2.8211 - dense_3_loss_5: 1.4590 - dense_3_loss_6: 1.7466 - dense_3_loss_7: 2.7002 - dense_3_loss_8: 1.4475 - dense_3_loss_9: 2.0268 - dense_3_loss_10: 2.7868 - dense_3_acc_1: 0.0675 - dense_3_acc_2: 0.3569 - dense_3_acc_3: 0.1541 - dense_3_acc_4: 0.0475 - dense_3_acc_5: 0.8075 - dense_3_acc_6: 0.0694 - dense_3_acc_7: 0.0097 - dense_3_acc_8: 0.8806 - dense_3_acc_9: 0.0419 - dense_3_acc_10: 0.0187 4800/10000 [=============>................] - ETA: 28s - loss: 21.0850 - dense_3_loss_1: 2.0901 - dense_3_loss_2: 1.7716 - dense_3_loss_3: 2.2461 - dense_3_loss_4: 2.8295 - dense_3_loss_5: 1.4463 - dense_3_loss_6: 1.7428 - dense_3_loss_7: 2.7047 - dense_3_loss_8: 1.4429 - dense_3_loss_9: 2.0196 - dense_3_loss_10: 2.7914 - dense_3_acc_1: 0.0655 - dense_3_acc_2: 0.3645 - dense_3_acc_3: 0.1588 - dense_3_acc_4: 0.0500 - dense_3_acc_5: 0.8133 - dense_3_acc_6: 0.0673 - dense_3_acc_7: 0.0094 - dense_3_acc_8: 0.8842 - dense_3_acc_9: 0.0427 - dense_3_acc_10: 0.020 - ETA: 27s - loss: 21.0281 - dense_3_loss_1: 2.0786 - dense_3_loss_2: 1.7538 - dense_3_loss_3: 2.2327 - dense_3_loss_4: 2.8345 - dense_3_loss_5: 1.4333 - dense_3_loss_6: 1.7398 - dense_3_loss_7: 2.7100 - dense_3_loss_8: 1.4382 - dense_3_loss_9: 2.0150 - dense_3_loss_10: 2.7921 - dense_3_acc_1: 0.0635 - dense_3_acc_2: 0.3729 - dense_3_acc_3: 0.1659 - dense_3_acc_4: 0.0512 - dense_3_acc_5: 0.8188 - dense_3_acc_6: 0.0653 - dense_3_acc_7: 0.0091 - dense_3_acc_8: 0.8876 - dense_3_acc_9: 0.0415 - dense_3_acc_10: 0.022 - ETA: 26s - loss: 20.9753 - dense_3_loss_1: 2.0707 - dense_3_loss_2: 1.7401 - dense_3_loss_3: 2.2235 - dense_3_loss_4: 2.8375 - dense_3_loss_5: 1.4205 - dense_3_loss_6: 1.7376 - dense_3_loss_7: 2.7151 - dense_3_loss_8: 1.4339 - dense_3_loss_9: 2.0107 - dense_3_loss_10: 2.7857 - dense_3_acc_1: 0.0646 - dense_3_acc_2: 0.3783 - dense_3_acc_3: 0.1689 - dense_3_acc_4: 0.0520 - dense_3_acc_5: 0.8240 - dense_3_acc_6: 0.0634 - dense_3_acc_7: 0.0089 - dense_3_acc_8: 0.8909 - dense_3_acc_9: 0.0403 - dense_3_acc_10: 0.022 - ETA: 25s - loss: 20.9200 - dense_3_loss_1: 2.0582 - dense_3_loss_2: 1.7254 - dense_3_loss_3: 2.2128 - dense_3_loss_4: 2.8376 - dense_3_loss_5: 1.4093 - dense_3_loss_6: 1.7370 - dense_3_loss_7: 2.7185 - dense_3_loss_8: 1.4318 - dense_3_loss_9: 2.0055 - dense_3_loss_10: 2.7838 - dense_3_acc_1: 0.0803 - dense_3_acc_2: 0.3853 - dense_3_acc_3: 0.1711 - dense_3_acc_4: 0.0536 - dense_3_acc_5: 0.8289 - dense_3_acc_6: 0.0617 - dense_3_acc_7: 0.0086 - dense_3_acc_8: 0.8939 - dense_3_acc_9: 0.0392 - dense_3_acc_10: 0.025 - ETA: 24s - loss: 20.8527 - dense_3_loss_1: 2.0406 - dense_3_loss_2: 1.7092 - dense_3_loss_3: 2.2007 - dense_3_loss_4: 2.8372 - dense_3_loss_5: 1.4011 - dense_3_loss_6: 1.7376 - dense_3_loss_7: 2.7168 - dense_3_loss_8: 1.4316 - dense_3_loss_9: 1.9988 - dense_3_loss_10: 2.7792 - dense_3_acc_1: 0.0973 - dense_3_acc_2: 0.3941 - dense_3_acc_3: 0.1751 - dense_3_acc_4: 0.0557 - dense_3_acc_5: 0.8335 - dense_3_acc_6: 0.0600 - dense_3_acc_7: 0.0084 - dense_3_acc_8: 0.8968 - dense_3_acc_9: 0.0449 - dense_3_acc_10: 0.030 - ETA: 24s - loss: 20.8022 - dense_3_loss_1: 2.0268 - dense_3_loss_2: 1.6973 - dense_3_loss_3: 2.1864 - dense_3_loss_4: 2.8366 - dense_3_loss_5: 1.3963 - dense_3_loss_6: 1.7356 - dense_3_loss_7: 2.7170 - dense_3_loss_8: 1.4331 - dense_3_loss_9: 1.9922 - dense_3_loss_10: 2.7809 - dense_3_acc_1: 0.1108 - dense_3_acc_2: 0.3997 - dense_3_acc_3: 0.1800 - dense_3_acc_4: 0.0574 - dense_3_acc_5: 0.8379 - dense_3_acc_6: 0.0584 - dense_3_acc_7: 0.0082 - dense_3_acc_8: 0.8905 - dense_3_acc_9: 0.0508 - dense_3_acc_10: 0.031 - ETA: 23s - loss: 20.7514 - dense_3_loss_1: 2.0127 - dense_3_loss_2: 1.6839 - dense_3_loss_3: 2.1727 - dense_3_loss_4: 2.8413 - dense_3_loss_5: 1.3880 - dense_3_loss_6: 1.7352 - dense_3_loss_7: 2.7173 - dense_3_loss_8: 1.4323 - dense_3_loss_9: 1.9870 - dense_3_loss_10: 2.7810 - dense_3_acc_1: 0.1233 - dense_3_acc_2: 0.4049 - dense_3_acc_3: 0.1854 - dense_3_acc_4: 0.0572 - dense_3_acc_5: 0.8421 - dense_3_acc_6: 0.0569 - dense_3_acc_7: 0.0079 - dense_3_acc_8: 0.8931 - dense_3_acc_9: 0.0567 - dense_3_acc_10: 0.034 - ETA: 22s - loss: 20.6966 - dense_3_loss_1: 1.9984 - dense_3_loss_2: 1.6692 - dense_3_loss_3: 2.1666 - dense_3_loss_4: 2.8442 - dense_3_loss_5: 1.3762 - dense_3_loss_6: 1.7334 - dense_3_loss_7: 2.7212 - dense_3_loss_8: 1.4292 - dense_3_loss_9: 1.9832 - dense_3_loss_10: 2.7750 - dense_3_acc_1: 0.1355 - dense_3_acc_2: 0.4100 - dense_3_acc_3: 0.1863 - dense_3_acc_4: 0.0557 - dense_3_acc_5: 0.8460 - dense_3_acc_6: 0.0555 - dense_3_acc_7: 0.0078 - dense_3_acc_8: 0.8958 - dense_3_acc_9: 0.0570 - dense_3_acc_10: 0.039 - ETA: 21s - loss: 20.6379 - dense_3_loss_1: 1.9824 - dense_3_loss_2: 1.6534 - dense_3_loss_3: 2.1564 - dense_3_loss_4: 2.8465 - dense_3_loss_5: 1.3636 - dense_3_loss_6: 1.7344 - dense_3_loss_7: 2.7224 - dense_3_loss_8: 1.4252 - dense_3_loss_9: 1.9779 - dense_3_loss_10: 2.7757 - dense_3_acc_1: 0.1478 - dense_3_acc_2: 0.4159 - dense_3_acc_3: 0.1898 - dense_3_acc_4: 0.0544 - dense_3_acc_5: 0.8498 - dense_3_acc_6: 0.0541 - dense_3_acc_7: 0.0076 - dense_3_acc_8: 0.8983 - dense_3_acc_9: 0.0578 - dense_3_acc_10: 0.041 - ETA: 20s - loss: 20.5798 - dense_3_loss_1: 1.9660 - dense_3_loss_2: 1.6379 - dense_3_loss_3: 2.1464 - dense_3_loss_4: 2.8460 - dense_3_loss_5: 1.3516 - dense_3_loss_6: 1.7348 - dense_3_loss_7: 2.7273 - dense_3_loss_8: 1.4214 - dense_3_loss_9: 1.9720 - dense_3_loss_10: 2.7763 - dense_3_acc_1: 0.1593 - dense_3_acc_2: 0.4210 - dense_3_acc_3: 0.1945 - dense_3_acc_4: 0.0533 - dense_3_acc_5: 0.8533 - dense_3_acc_6: 0.0529 - dense_3_acc_7: 0.0074 - dense_3_acc_8: 0.9007 - dense_3_acc_9: 0.0619 - dense_3_acc_10: 0.043 - ETA: 20s - loss: 20.5246 - dense_3_loss_1: 1.9478 - dense_3_loss_2: 1.6216 - dense_3_loss_3: 2.1355 - dense_3_loss_4: 2.8483 - dense_3_loss_5: 1.3423 - dense_3_loss_6: 1.7364 - dense_3_loss_7: 2.7270 - dense_3_loss_8: 1.4189 - dense_3_loss_9: 1.9665 - dense_3_loss_10: 2.7802 - dense_3_acc_1: 0.1709 - dense_3_acc_2: 0.4265 - dense_3_acc_3: 0.1995 - dense_3_acc_4: 0.0528 - dense_3_acc_5: 0.8567 - dense_3_acc_6: 0.0516 - dense_3_acc_7: 0.0072 - dense_3_acc_8: 0.8988 - dense_3_acc_9: 0.0658 - dense_3_acc_10: 0.045 - ETA: 19s - loss: 20.4572 - dense_3_loss_1: 1.9285 - dense_3_loss_2: 1.6047 - dense_3_loss_3: 2.1252 - dense_3_loss_4: 2.8489 - dense_3_loss_5: 1.3312 - dense_3_loss_6: 1.7371 - dense_3_loss_7: 2.7257 - dense_3_loss_8: 1.4169 - dense_3_loss_9: 1.9610 - dense_3_loss_10: 2.7779 - dense_3_acc_1: 0.1832 - dense_3_acc_2: 0.4339 - dense_3_acc_3: 0.2041 - dense_3_acc_4: 0.0520 - dense_3_acc_5: 0.8600 - dense_3_acc_6: 0.0505 - dense_3_acc_7: 0.0070 - dense_3_acc_8: 0.8952 - dense_3_acc_9: 0.0707 - dense_3_acc_10: 0.048 - ETA: 18s - loss: 20.4009 - dense_3_loss_1: 1.9115 - dense_3_loss_2: 1.5894 - dense_3_loss_3: 2.1161 - dense_3_loss_4: 2.8496 - dense_3_loss_5: 1.3205 - dense_3_loss_6: 1.7358 - dense_3_loss_7: 2.7285 - dense_3_loss_8: 1.4169 - dense_3_loss_9: 1.9545 - dense_3_loss_10: 2.7780 - dense_3_acc_1: 0.1931 - dense_3_acc_2: 0.4409 - dense_3_acc_3: 0.2082 - dense_3_acc_4: 0.0509 - dense_3_acc_5: 0.8631 - dense_3_acc_6: 0.0493 - dense_3_acc_7: 0.0073 - dense_3_acc_8: 0.8871 - dense_3_acc_9: 0.0784 - dense_3_acc_10: 0.050 - ETA: 18s - loss: 20.3431 - dense_3_loss_1: 1.8934 - dense_3_loss_2: 1.5745 - dense_3_loss_3: 2.1066 - dense_3_loss_4: 2.8505 - dense_3_loss_5: 1.3101 - dense_3_loss_6: 1.7327 - dense_3_loss_7: 2.7326 - dense_3_loss_8: 1.4167 - dense_3_loss_9: 1.9482 - dense_3_loss_10: 2.7777 - dense_3_acc_1: 0.2035 - dense_3_acc_2: 0.4478 - dense_3_acc_3: 0.2124 - dense_3_acc_4: 0.0498 - dense_3_acc_5: 0.8661 - dense_3_acc_6: 0.0483 - dense_3_acc_7: 0.0078 - dense_3_acc_8: 0.8807 - dense_3_acc_9: 0.0846 - dense_3_acc_10: 0.052 - ETA: 17s - loss: 20.2944 - dense_3_loss_1: 1.8782 - dense_3_loss_2: 1.5620 - dense_3_loss_3: 2.0993 - dense_3_loss_4: 2.8484 - dense_3_loss_5: 1.2997 - dense_3_loss_6: 1.7316 - dense_3_loss_7: 2.7345 - dense_3_loss_8: 1.4153 - dense_3_loss_9: 1.9434 - dense_3_loss_10: 2.7820 - dense_3_acc_1: 0.2113 - dense_3_acc_2: 0.4506 - dense_3_acc_3: 0.2149 - dense_3_acc_4: 0.0487 - dense_3_acc_5: 0.8689 - dense_3_acc_6: 0.0472 - dense_3_acc_7: 0.0079 - dense_3_acc_8: 0.8760 - dense_3_acc_9: 0.0891 - dense_3_acc_10: 0.053 - ETA: 17s - loss: 20.2397 - dense_3_loss_1: 1.8636 - dense_3_loss_2: 1.5496 - dense_3_loss_3: 2.0924 - dense_3_loss_4: 2.8459 - dense_3_loss_5: 1.2892 - dense_3_loss_6: 1.7287 - dense_3_loss_7: 2.7369 - dense_3_loss_8: 1.4109 - dense_3_loss_9: 1.9407 - dense_3_loss_10: 2.7819 - dense_3_acc_1: 0.2183 - dense_3_acc_2: 0.4548 - dense_3_acc_3: 0.2171 - dense_3_acc_4: 0.0477 - dense_3_acc_5: 0.8717 - dense_3_acc_6: 0.0463 - dense_3_acc_7: 0.0077 - dense_3_acc_8: 0.8777 - dense_3_acc_9: 0.0915 - dense_3_acc_10: 0.0550 6400/10000 [==================>...........] - ETA: 16s - loss: 20.1808 - dense_3_loss_1: 1.8486 - dense_3_loss_2: 1.5354 - dense_3_loss_3: 2.0828 - dense_3_loss_4: 2.8442 - dense_3_loss_5: 1.2790 - dense_3_loss_6: 1.7250 - dense_3_loss_7: 2.7405 - dense_3_loss_8: 1.4074 - dense_3_loss_9: 1.9381 - dense_3_loss_10: 2.7795 - dense_3_acc_1: 0.2251 - dense_3_acc_2: 0.4616 - dense_3_acc_3: 0.2216 - dense_3_acc_4: 0.0467 - dense_3_acc_5: 0.8743 - dense_3_acc_6: 0.0453 - dense_3_acc_7: 0.0076 - dense_3_acc_8: 0.8800 - dense_3_acc_9: 0.0941 - dense_3_acc_10: 0.057 - ETA: 15s - loss: 20.1248 - dense_3_loss_1: 1.8316 - dense_3_loss_2: 1.5213 - dense_3_loss_3: 2.0756 - dense_3_loss_4: 2.8453 - dense_3_loss_5: 1.2697 - dense_3_loss_6: 1.7202 - dense_3_loss_7: 2.7428 - dense_3_loss_8: 1.4061 - dense_3_loss_9: 1.9343 - dense_3_loss_10: 2.7779 - dense_3_acc_1: 0.2334 - dense_3_acc_2: 0.4692 - dense_3_acc_3: 0.2246 - dense_3_acc_4: 0.0464 - dense_3_acc_5: 0.8768 - dense_3_acc_6: 0.0444 - dense_3_acc_7: 0.0074 - dense_3_acc_8: 0.8804 - dense_3_acc_9: 0.1006 - dense_3_acc_10: 0.058 - ETA: 15s - loss: 20.0638 - dense_3_loss_1: 1.8135 - dense_3_loss_2: 1.5066 - dense_3_loss_3: 2.0689 - dense_3_loss_4: 2.8420 - dense_3_loss_5: 1.2604 - dense_3_loss_6: 1.7150 - dense_3_loss_7: 2.7466 - dense_3_loss_8: 1.4048 - dense_3_loss_9: 1.9303 - dense_3_loss_10: 2.7757 - dense_3_acc_1: 0.2420 - dense_3_acc_2: 0.4767 - dense_3_acc_3: 0.2261 - dense_3_acc_4: 0.0465 - dense_3_acc_5: 0.8792 - dense_3_acc_6: 0.0435 - dense_3_acc_7: 0.0073 - dense_3_acc_8: 0.8804 - dense_3_acc_9: 0.1055 - dense_3_acc_10: 0.059 - ETA: 14s - loss: 19.9987 - dense_3_loss_1: 1.7967 - dense_3_loss_2: 1.4932 - dense_3_loss_3: 2.0610 - dense_3_loss_4: 2.8407 - dense_3_loss_5: 1.2505 - dense_3_loss_6: 1.7098 - dense_3_loss_7: 2.7460 - dense_3_loss_8: 1.4011 - dense_3_loss_9: 1.9258 - dense_3_loss_10: 2.7740 - dense_3_acc_1: 0.2494 - dense_3_acc_2: 0.4819 - dense_3_acc_3: 0.2288 - dense_3_acc_4: 0.0469 - dense_3_acc_5: 0.8815 - dense_3_acc_6: 0.0435 - dense_3_acc_7: 0.0071 - dense_3_acc_8: 0.8823 - dense_3_acc_9: 0.1085 - dense_3_acc_10: 0.060 - ETA: 14s - loss: 19.9341 - dense_3_loss_1: 1.7805 - dense_3_loss_2: 1.4800 - dense_3_loss_3: 2.0529 - dense_3_loss_4: 2.8408 - dense_3_loss_5: 1.2396 - dense_3_loss_6: 1.7037 - dense_3_loss_7: 2.7464 - dense_3_loss_8: 1.3956 - dense_3_loss_9: 1.9230 - dense_3_loss_10: 2.7715 - dense_3_acc_1: 0.2560 - dense_3_acc_2: 0.4866 - dense_3_acc_3: 0.2321 - dense_3_acc_4: 0.0468 - dense_3_acc_5: 0.8838 - dense_3_acc_6: 0.0451 - dense_3_acc_7: 0.0070 - dense_3_acc_8: 0.8842 - dense_3_acc_9: 0.1085 - dense_3_acc_10: 0.062 - ETA: 13s - loss: 19.8715 - dense_3_loss_1: 1.7645 - dense_3_loss_2: 1.4671 - dense_3_loss_3: 2.0455 - dense_3_loss_4: 2.8401 - dense_3_loss_5: 1.2290 - dense_3_loss_6: 1.6957 - dense_3_loss_7: 2.7502 - dense_3_loss_8: 1.3905 - dense_3_loss_9: 1.9199 - dense_3_loss_10: 2.7689 - dense_3_acc_1: 0.2624 - dense_3_acc_2: 0.4917 - dense_3_acc_3: 0.2339 - dense_3_acc_4: 0.0461 - dense_3_acc_5: 0.8859 - dense_3_acc_6: 0.0524 - dense_3_acc_7: 0.0072 - dense_3_acc_8: 0.8861 - dense_3_acc_9: 0.1128 - dense_3_acc_10: 0.063 - ETA: 13s - loss: 19.7999 - dense_3_loss_1: 1.7456 - dense_3_loss_2: 1.4528 - dense_3_loss_3: 2.0358 - dense_3_loss_4: 2.8391 - dense_3_loss_5: 1.2194 - dense_3_loss_6: 1.6859 - dense_3_loss_7: 2.7515 - dense_3_loss_8: 1.3843 - dense_3_loss_9: 1.9161 - dense_3_loss_10: 2.7694 - dense_3_acc_1: 0.2711 - dense_3_acc_2: 0.4989 - dense_3_acc_3: 0.2355 - dense_3_acc_4: 0.0453 - dense_3_acc_5: 0.8880 - dense_3_acc_6: 0.0644 - dense_3_acc_7: 0.0089 - dense_3_acc_8: 0.8875 - dense_3_acc_9: 0.1182 - dense_3_acc_10: 0.065 - ETA: 12s - loss: 19.7282 - dense_3_loss_1: 1.7291 - dense_3_loss_2: 1.4399 - dense_3_loss_3: 2.0270 - dense_3_loss_4: 2.8349 - dense_3_loss_5: 1.2107 - dense_3_loss_6: 1.6733 - dense_3_loss_7: 2.7553 - dense_3_loss_8: 1.3752 - dense_3_loss_9: 1.9120 - dense_3_loss_10: 2.7708 - dense_3_acc_1: 0.2775 - dense_3_acc_2: 0.5046 - dense_3_acc_3: 0.2388 - dense_3_acc_4: 0.0445 - dense_3_acc_5: 0.8896 - dense_3_acc_6: 0.0775 - dense_3_acc_7: 0.0100 - dense_3_acc_8: 0.8884 - dense_3_acc_9: 0.1180 - dense_3_acc_10: 0.065 - ETA: 12s - loss: 19.6591 - dense_3_loss_1: 1.7146 - dense_3_loss_2: 1.4287 - dense_3_loss_3: 2.0224 - dense_3_loss_4: 2.8315 - dense_3_loss_5: 1.2018 - dense_3_loss_6: 1.6608 - dense_3_loss_7: 2.7566 - dense_3_loss_8: 1.3638 - dense_3_loss_9: 1.9085 - dense_3_loss_10: 2.7703 - dense_3_acc_1: 0.2823 - dense_3_acc_2: 0.5082 - dense_3_acc_3: 0.2400 - dense_3_acc_4: 0.0439 - dense_3_acc_5: 0.8916 - dense_3_acc_6: 0.0895 - dense_3_acc_7: 0.0114 - dense_3_acc_8: 0.8904 - dense_3_acc_9: 0.1221 - dense_3_acc_10: 0.066 - ETA: 12s - loss: 19.5806 - dense_3_loss_1: 1.6975 - dense_3_loss_2: 1.4155 - dense_3_loss_3: 2.0153 - dense_3_loss_4: 2.8325 - dense_3_loss_5: 1.1914 - dense_3_loss_6: 1.6496 - dense_3_loss_7: 2.7576 - dense_3_loss_8: 1.3511 - dense_3_loss_9: 1.9025 - dense_3_loss_10: 2.7676 - dense_3_acc_1: 0.2890 - dense_3_acc_2: 0.5141 - dense_3_acc_3: 0.2416 - dense_3_acc_4: 0.0431 - dense_3_acc_5: 0.8934 - dense_3_acc_6: 0.1007 - dense_3_acc_7: 0.0122 - dense_3_acc_8: 0.8922 - dense_3_acc_9: 0.1279 - dense_3_acc_10: 0.067 - ETA: 11s - loss: 19.4983 - dense_3_loss_1: 1.6806 - dense_3_loss_2: 1.4030 - dense_3_loss_3: 2.0093 - dense_3_loss_4: 2.8317 - dense_3_loss_5: 1.1794 - dense_3_loss_6: 1.6368 - dense_3_loss_7: 2.7606 - dense_3_loss_8: 1.3364 - dense_3_loss_9: 1.8959 - dense_3_loss_10: 2.7647 - dense_3_acc_1: 0.2958 - dense_3_acc_2: 0.5195 - dense_3_acc_3: 0.2439 - dense_3_acc_4: 0.0425 - dense_3_acc_5: 0.8953 - dense_3_acc_6: 0.1115 - dense_3_acc_7: 0.0129 - dense_3_acc_8: 0.8941 - dense_3_acc_9: 0.1329 - dense_3_acc_10: 0.067 - ETA: 11s - loss: 19.4101 - dense_3_loss_1: 1.6639 - dense_3_loss_2: 1.3902 - dense_3_loss_3: 2.0027 - dense_3_loss_4: 2.8286 - dense_3_loss_5: 1.1664 - dense_3_loss_6: 1.6241 - dense_3_loss_7: 2.7610 - dense_3_loss_8: 1.3212 - dense_3_loss_9: 1.8903 - dense_3_loss_10: 2.7615 - dense_3_acc_1: 0.3022 - dense_3_acc_2: 0.5250 - dense_3_acc_3: 0.2453 - dense_3_acc_4: 0.0428 - dense_3_acc_5: 0.8970 - dense_3_acc_6: 0.1218 - dense_3_acc_7: 0.0142 - dense_3_acc_8: 0.8958 - dense_3_acc_9: 0.1367 - dense_3_acc_10: 0.068 - ETA: 10s - loss: 19.3284 - dense_3_loss_1: 1.6497 - dense_3_loss_2: 1.3791 - dense_3_loss_3: 2.0000 - dense_3_loss_4: 2.8272 - dense_3_loss_5: 1.1528 - dense_3_loss_6: 1.6113 - dense_3_loss_7: 2.7627 - dense_3_loss_8: 1.3055 - dense_3_loss_9: 1.8848 - dense_3_loss_10: 2.7553 - dense_3_acc_1: 0.3064 - dense_3_acc_2: 0.5295 - dense_3_acc_3: 0.2459 - dense_3_acc_4: 0.0425 - dense_3_acc_5: 0.8987 - dense_3_acc_6: 0.1315 - dense_3_acc_7: 0.0151 - dense_3_acc_8: 0.8975 - dense_3_acc_9: 0.1403 - dense_3_acc_10: 0.070 - ETA: 10s - loss: 19.2338 - dense_3_loss_1: 1.6337 - dense_3_loss_2: 1.3666 - dense_3_loss_3: 1.9929 - dense_3_loss_4: 2.8236 - dense_3_loss_5: 1.1388 - dense_3_loss_6: 1.6004 - dense_3_loss_7: 2.7635 - dense_3_loss_8: 1.2886 - dense_3_loss_9: 1.8768 - dense_3_loss_10: 2.7489 - dense_3_acc_1: 0.3121 - dense_3_acc_2: 0.5345 - dense_3_acc_3: 0.2481 - dense_3_acc_4: 0.0421 - dense_3_acc_5: 0.9003 - dense_3_acc_6: 0.1406 - dense_3_acc_7: 0.0158 - dense_3_acc_8: 0.8992 - dense_3_acc_9: 0.1452 - dense_3_acc_10: 0.071 - ETA: 9s - loss: 19.1404 - dense_3_loss_1: 1.6180 - dense_3_loss_2: 1.3543 - dense_3_loss_3: 1.9855 - dense_3_loss_4: 2.8196 - dense_3_loss_5: 1.1248 - dense_3_loss_6: 1.5886 - dense_3_loss_7: 2.7638 - dense_3_loss_8: 1.2718 - dense_3_loss_9: 1.8707 - dense_3_loss_10: 2.7432 - dense_3_acc_1: 0.3173 - dense_3_acc_2: 0.5398 - dense_3_acc_3: 0.2508 - dense_3_acc_4: 0.0430 - dense_3_acc_5: 0.9019 - dense_3_acc_6: 0.1495 - dense_3_acc_7: 0.0163 - dense_3_acc_8: 0.9008 - dense_3_acc_9: 0.1484 - dense_3_acc_10: 0.072 - ETA: 9s - loss: 19.0492 - dense_3_loss_1: 1.6037 - dense_3_loss_2: 1.3435 - dense_3_loss_3: 1.9802 - dense_3_loss_4: 2.8163 - dense_3_loss_5: 1.1106 - dense_3_loss_6: 1.5763 - dense_3_loss_7: 2.7619 - dense_3_loss_8: 1.2549 - dense_3_loss_9: 1.8648 - dense_3_loss_10: 2.7371 - dense_3_acc_1: 0.3217 - dense_3_acc_2: 0.5447 - dense_3_acc_3: 0.2522 - dense_3_acc_4: 0.0433 - dense_3_acc_5: 0.9034 - dense_3_acc_6: 0.1588 - dense_3_acc_7: 0.0163 - dense_3_acc_8: 0.9023 - dense_3_acc_9: 0.1530 - dense_3_acc_10: 0.0739 8000/10000 [=======================>......] - ETA: 9s - loss: 18.9504 - dense_3_loss_1: 1.5888 - dense_3_loss_2: 1.3321 - dense_3_loss_3: 1.9724 - dense_3_loss_4: 2.8125 - dense_3_loss_5: 1.0965 - dense_3_loss_6: 1.5641 - dense_3_loss_7: 2.7574 - dense_3_loss_8: 1.2384 - dense_3_loss_9: 1.8572 - dense_3_loss_10: 2.7310 - dense_3_acc_1: 0.3272 - dense_3_acc_2: 0.5502 - dense_3_acc_3: 0.2551 - dense_3_acc_4: 0.0434 - dense_3_acc_5: 0.9049 - dense_3_acc_6: 0.1683 - dense_3_acc_7: 0.0166 - dense_3_acc_8: 0.9038 - dense_3_acc_9: 0.1568 - dense_3_acc_10: 0.07 - ETA: 8s - loss: 18.8554 - dense_3_loss_1: 1.5760 - dense_3_loss_2: 1.3225 - dense_3_loss_3: 1.9655 - dense_3_loss_4: 2.8070 - dense_3_loss_5: 1.0824 - dense_3_loss_6: 1.5524 - dense_3_loss_7: 2.7529 - dense_3_loss_8: 1.2220 - dense_3_loss_9: 1.8499 - dense_3_loss_10: 2.7246 - dense_3_acc_1: 0.3300 - dense_3_acc_2: 0.5539 - dense_3_acc_3: 0.2571 - dense_3_acc_4: 0.0453 - dense_3_acc_5: 0.9064 - dense_3_acc_6: 0.1768 - dense_3_acc_7: 0.0183 - dense_3_acc_8: 0.9053 - dense_3_acc_9: 0.1606 - dense_3_acc_10: 0.07 - ETA: 8s - loss: 18.7602 - dense_3_loss_1: 1.5623 - dense_3_loss_2: 1.3123 - dense_3_loss_3: 1.9608 - dense_3_loss_4: 2.8016 - dense_3_loss_5: 1.0684 - dense_3_loss_6: 1.5397 - dense_3_loss_7: 2.7484 - dense_3_loss_8: 1.2057 - dense_3_loss_9: 1.8425 - dense_3_loss_10: 2.7184 - dense_3_acc_1: 0.3360 - dense_3_acc_2: 0.5588 - dense_3_acc_3: 0.2579 - dense_3_acc_4: 0.0457 - dense_3_acc_5: 0.9078 - dense_3_acc_6: 0.1857 - dense_3_acc_7: 0.0200 - dense_3_acc_8: 0.9067 - dense_3_acc_9: 0.1640 - dense_3_acc_10: 0.07 - ETA: 8s - loss: 18.6657 - dense_3_loss_1: 1.5495 - dense_3_loss_2: 1.3021 - dense_3_loss_3: 1.9540 - dense_3_loss_4: 2.7975 - dense_3_loss_5: 1.0543 - dense_3_loss_6: 1.5275 - dense_3_loss_7: 2.7454 - dense_3_loss_8: 1.1898 - dense_3_loss_9: 1.8334 - dense_3_loss_10: 2.7122 - dense_3_acc_1: 0.3404 - dense_3_acc_2: 0.5637 - dense_3_acc_3: 0.2600 - dense_3_acc_4: 0.0465 - dense_3_acc_5: 0.9091 - dense_3_acc_6: 0.1932 - dense_3_acc_7: 0.0212 - dense_3_acc_8: 0.9081 - dense_3_acc_9: 0.1668 - dense_3_acc_10: 0.07 - ETA: 7s - loss: 18.5692 - dense_3_loss_1: 1.5367 - dense_3_loss_2: 1.2913 - dense_3_loss_3: 1.9451 - dense_3_loss_4: 2.7917 - dense_3_loss_5: 1.0405 - dense_3_loss_6: 1.5155 - dense_3_loss_7: 2.7404 - dense_3_loss_8: 1.1745 - dense_3_loss_9: 1.8278 - dense_3_loss_10: 2.7058 - dense_3_acc_1: 0.3459 - dense_3_acc_2: 0.5690 - dense_3_acc_3: 0.2635 - dense_3_acc_4: 0.0477 - dense_3_acc_5: 0.9104 - dense_3_acc_6: 0.2014 - dense_3_acc_7: 0.0226 - dense_3_acc_8: 0.9094 - dense_3_acc_9: 0.1687 - dense_3_acc_10: 0.07 - ETA: 7s - loss: 18.4761 - dense_3_loss_1: 1.5235 - dense_3_loss_2: 1.2810 - dense_3_loss_3: 1.9384 - dense_3_loss_4: 2.7875 - dense_3_loss_5: 1.0267 - dense_3_loss_6: 1.5021 - dense_3_loss_7: 2.7356 - dense_3_loss_8: 1.1597 - dense_3_loss_9: 1.8224 - dense_3_loss_10: 2.6992 - dense_3_acc_1: 0.3533 - dense_3_acc_2: 0.5740 - dense_3_acc_3: 0.2653 - dense_3_acc_4: 0.0481 - dense_3_acc_5: 0.9117 - dense_3_acc_6: 0.2107 - dense_3_acc_7: 0.0239 - dense_3_acc_8: 0.9107 - dense_3_acc_9: 0.1707 - dense_3_acc_10: 0.07 - ETA: 7s - loss: 18.3818 - dense_3_loss_1: 1.5101 - dense_3_loss_2: 1.2702 - dense_3_loss_3: 1.9301 - dense_3_loss_4: 2.7842 - dense_3_loss_5: 1.0133 - dense_3_loss_6: 1.4901 - dense_3_loss_7: 2.7306 - dense_3_loss_8: 1.1447 - dense_3_loss_9: 1.8154 - dense_3_loss_10: 2.6931 - dense_3_acc_1: 0.3593 - dense_3_acc_2: 0.5789 - dense_3_acc_3: 0.2676 - dense_3_acc_4: 0.0483 - dense_3_acc_5: 0.9130 - dense_3_acc_6: 0.2187 - dense_3_acc_7: 0.0259 - dense_3_acc_8: 0.9120 - dense_3_acc_9: 0.1723 - dense_3_acc_10: 0.07 - ETA: 6s - loss: 18.2898 - dense_3_loss_1: 1.4976 - dense_3_loss_2: 1.2593 - dense_3_loss_3: 1.9220 - dense_3_loss_4: 2.7816 - dense_3_loss_5: 1.0000 - dense_3_loss_6: 1.4779 - dense_3_loss_7: 2.7264 - dense_3_loss_8: 1.1298 - dense_3_loss_9: 1.8079 - dense_3_loss_10: 2.6873 - dense_3_acc_1: 0.3667 - dense_3_acc_2: 0.5836 - dense_3_acc_3: 0.2703 - dense_3_acc_4: 0.0487 - dense_3_acc_5: 0.9142 - dense_3_acc_6: 0.2265 - dense_3_acc_7: 0.0271 - dense_3_acc_8: 0.9132 - dense_3_acc_9: 0.1757 - dense_3_acc_10: 0.07 - ETA: 6s - loss: 18.1983 - dense_3_loss_1: 1.4852 - dense_3_loss_2: 1.2481 - dense_3_loss_3: 1.9149 - dense_3_loss_4: 2.7765 - dense_3_loss_5: 0.9870 - dense_3_loss_6: 1.4660 - dense_3_loss_7: 2.7218 - dense_3_loss_8: 1.1153 - dense_3_loss_9: 1.8011 - dense_3_loss_10: 2.6822 - dense_3_acc_1: 0.3741 - dense_3_acc_2: 0.5885 - dense_3_acc_3: 0.2718 - dense_3_acc_4: 0.0497 - dense_3_acc_5: 0.9153 - dense_3_acc_6: 0.2340 - dense_3_acc_7: 0.0282 - dense_3_acc_8: 0.9144 - dense_3_acc_9: 0.1801 - dense_3_acc_10: 0.08 - ETA: 6s - loss: 18.1061 - dense_3_loss_1: 1.4727 - dense_3_loss_2: 1.2375 - dense_3_loss_3: 1.9076 - dense_3_loss_4: 2.7718 - dense_3_loss_5: 0.9743 - dense_3_loss_6: 1.4541 - dense_3_loss_7: 2.7162 - dense_3_loss_8: 1.1010 - dense_3_loss_9: 1.7945 - dense_3_loss_10: 2.6764 - dense_3_acc_1: 0.3814 - dense_3_acc_2: 0.5927 - dense_3_acc_3: 0.2735 - dense_3_acc_4: 0.0503 - dense_3_acc_5: 0.9165 - dense_3_acc_6: 0.2418 - dense_3_acc_7: 0.0297 - dense_3_acc_8: 0.9155 - dense_3_acc_9: 0.1832 - dense_3_acc_10: 0.08 - ETA: 6s - loss: 18.0140 - dense_3_loss_1: 1.4598 - dense_3_loss_2: 1.2271 - dense_3_loss_3: 1.9007 - dense_3_loss_4: 2.7657 - dense_3_loss_5: 0.9621 - dense_3_loss_6: 1.4433 - dense_3_loss_7: 2.7103 - dense_3_loss_8: 1.0871 - dense_3_loss_9: 1.7879 - dense_3_loss_10: 2.6701 - dense_3_acc_1: 0.3879 - dense_3_acc_2: 0.5969 - dense_3_acc_3: 0.2747 - dense_3_acc_4: 0.0509 - dense_3_acc_5: 0.9176 - dense_3_acc_6: 0.2487 - dense_3_acc_7: 0.0323 - dense_3_acc_8: 0.9167 - dense_3_acc_9: 0.1860 - dense_3_acc_10: 0.08 - ETA: 5s - loss: 17.9255 - dense_3_loss_1: 1.4468 - dense_3_loss_2: 1.2161 - dense_3_loss_3: 1.8932 - dense_3_loss_4: 2.7613 - dense_3_loss_5: 0.9500 - dense_3_loss_6: 1.4333 - dense_3_loss_7: 2.7045 - dense_3_loss_8: 1.0736 - dense_3_loss_9: 1.7810 - dense_3_loss_10: 2.6658 - dense_3_acc_1: 0.3945 - dense_3_acc_2: 0.6013 - dense_3_acc_3: 0.2766 - dense_3_acc_4: 0.0513 - dense_3_acc_5: 0.9187 - dense_3_acc_6: 0.2550 - dense_3_acc_7: 0.0351 - dense_3_acc_8: 0.9178 - dense_3_acc_9: 0.1889 - dense_3_acc_10: 0.08 - ETA: 5s - loss: 17.8414 - dense_3_loss_1: 1.4357 - dense_3_loss_2: 1.2062 - dense_3_loss_3: 1.8860 - dense_3_loss_4: 2.7562 - dense_3_loss_5: 0.9381 - dense_3_loss_6: 1.4240 - dense_3_loss_7: 2.6982 - dense_3_loss_8: 1.0607 - dense_3_loss_9: 1.7750 - dense_3_loss_10: 2.6612 - dense_3_acc_1: 0.4013 - dense_3_acc_2: 0.6055 - dense_3_acc_3: 0.2787 - dense_3_acc_4: 0.0525 - dense_3_acc_5: 0.9197 - dense_3_acc_6: 0.2614 - dense_3_acc_7: 0.0366 - dense_3_acc_8: 0.9188 - dense_3_acc_9: 0.1926 - dense_3_acc_10: 0.08 - ETA: 5s - loss: 17.7570 - dense_3_loss_1: 1.4246 - dense_3_loss_2: 1.1975 - dense_3_loss_3: 1.8797 - dense_3_loss_4: 2.7503 - dense_3_loss_5: 0.9264 - dense_3_loss_6: 1.4137 - dense_3_loss_7: 2.6916 - dense_3_loss_8: 1.0481 - dense_3_loss_9: 1.7694 - dense_3_loss_10: 2.6556 - dense_3_acc_1: 0.4068 - dense_3_acc_2: 0.6085 - dense_3_acc_3: 0.2803 - dense_3_acc_4: 0.0540 - dense_3_acc_5: 0.9208 - dense_3_acc_6: 0.2681 - dense_3_acc_7: 0.0390 - dense_3_acc_8: 0.9199 - dense_3_acc_9: 0.1955 - dense_3_acc_10: 0.08 - ETA: 4s - loss: 17.6791 - dense_3_loss_1: 1.4132 - dense_3_loss_2: 1.1874 - dense_3_loss_3: 1.8727 - dense_3_loss_4: 2.7458 - dense_3_loss_5: 0.9151 - dense_3_loss_6: 1.4035 - dense_3_loss_7: 2.6866 - dense_3_loss_8: 1.0356 - dense_3_loss_9: 1.7671 - dense_3_loss_10: 2.6521 - dense_3_acc_1: 0.4124 - dense_3_acc_2: 0.6124 - dense_3_acc_3: 0.2816 - dense_3_acc_4: 0.0544 - dense_3_acc_5: 0.9218 - dense_3_acc_6: 0.2744 - dense_3_acc_7: 0.0401 - dense_3_acc_8: 0.9209 - dense_3_acc_9: 0.1972 - dense_3_acc_10: 0.08 - ETA: 4s - loss: 17.5956 - dense_3_loss_1: 1.4016 - dense_3_loss_2: 1.1769 - dense_3_loss_3: 1.8652 - dense_3_loss_4: 2.7414 - dense_3_loss_5: 0.9039 - dense_3_loss_6: 1.3942 - dense_3_loss_7: 2.6804 - dense_3_loss_8: 1.0233 - dense_3_loss_9: 1.7616 - dense_3_loss_10: 2.6470 - dense_3_acc_1: 0.4183 - dense_3_acc_2: 0.6166 - dense_3_acc_3: 0.2835 - dense_3_acc_4: 0.0546 - dense_3_acc_5: 0.9228 - dense_3_acc_6: 0.2802 - dense_3_acc_7: 0.0422 - dense_3_acc_8: 0.9219 - dense_3_acc_9: 0.1995 - dense_3_acc_10: 0.0856 9600/10000 [===========================>..] - ETA: 4s - loss: 17.5139 - dense_3_loss_1: 1.3906 - dense_3_loss_2: 1.1668 - dense_3_loss_3: 1.8582 - dense_3_loss_4: 2.7362 - dense_3_loss_5: 0.8931 - dense_3_loss_6: 1.3831 - dense_3_loss_7: 2.6754 - dense_3_loss_8: 1.0113 - dense_3_loss_9: 1.7562 - dense_3_loss_10: 2.6430 - dense_3_acc_1: 0.4241 - dense_3_acc_2: 0.6204 - dense_3_acc_3: 0.2851 - dense_3_acc_4: 0.0558 - dense_3_acc_5: 0.9237 - dense_3_acc_6: 0.2873 - dense_3_acc_7: 0.0435 - dense_3_acc_8: 0.9228 - dense_3_acc_9: 0.2014 - dense_3_acc_10: 0.08 - ETA: 4s - loss: 17.4347 - dense_3_loss_1: 1.3802 - dense_3_loss_2: 1.1560 - dense_3_loss_3: 1.8502 - dense_3_loss_4: 2.7318 - dense_3_loss_5: 0.8825 - dense_3_loss_6: 1.3753 - dense_3_loss_7: 2.6701 - dense_3_loss_8: 0.9995 - dense_3_loss_9: 1.7503 - dense_3_loss_10: 2.6389 - dense_3_acc_1: 0.4302 - dense_3_acc_2: 0.6246 - dense_3_acc_3: 0.2877 - dense_3_acc_4: 0.0567 - dense_3_acc_5: 0.9246 - dense_3_acc_6: 0.2920 - dense_3_acc_7: 0.0451 - dense_3_acc_8: 0.9238 - dense_3_acc_9: 0.2035 - dense_3_acc_10: 0.08 - ETA: 3s - loss: 17.3564 - dense_3_loss_1: 1.3700 - dense_3_loss_2: 1.1468 - dense_3_loss_3: 1.8430 - dense_3_loss_4: 2.7274 - dense_3_loss_5: 0.8721 - dense_3_loss_6: 1.3646 - dense_3_loss_7: 2.6647 - dense_3_loss_8: 0.9879 - dense_3_loss_9: 1.7448 - dense_3_loss_10: 2.6351 - dense_3_acc_1: 0.4358 - dense_3_acc_2: 0.6278 - dense_3_acc_3: 0.2899 - dense_3_acc_4: 0.0578 - dense_3_acc_5: 0.9255 - dense_3_acc_6: 0.2984 - dense_3_acc_7: 0.0463 - dense_3_acc_8: 0.9247 - dense_3_acc_9: 0.2063 - dense_3_acc_10: 0.08 - ETA: 3s - loss: 17.2802 - dense_3_loss_1: 1.3600 - dense_3_loss_2: 1.1375 - dense_3_loss_3: 1.8366 - dense_3_loss_4: 2.7215 - dense_3_loss_5: 0.8621 - dense_3_loss_6: 1.3558 - dense_3_loss_7: 2.6588 - dense_3_loss_8: 0.9767 - dense_3_loss_9: 1.7408 - dense_3_loss_10: 2.6303 - dense_3_acc_1: 0.4413 - dense_3_acc_2: 0.6314 - dense_3_acc_3: 0.2914 - dense_3_acc_4: 0.0586 - dense_3_acc_5: 0.9264 - dense_3_acc_6: 0.3036 - dense_3_acc_7: 0.0488 - dense_3_acc_8: 0.9256 - dense_3_acc_9: 0.2089 - dense_3_acc_10: 0.08 - ETA: 3s - loss: 17.2061 - dense_3_loss_1: 1.3496 - dense_3_loss_2: 1.1279 - dense_3_loss_3: 1.8297 - dense_3_loss_4: 2.7174 - dense_3_loss_5: 0.8522 - dense_3_loss_6: 1.3478 - dense_3_loss_7: 2.6531 - dense_3_loss_8: 0.9657 - dense_3_loss_9: 1.7356 - dense_3_loss_10: 2.6270 - dense_3_acc_1: 0.4468 - dense_3_acc_2: 0.6354 - dense_3_acc_3: 0.2931 - dense_3_acc_4: 0.0594 - dense_3_acc_5: 0.9273 - dense_3_acc_6: 0.3081 - dense_3_acc_7: 0.0505 - dense_3_acc_8: 0.9265 - dense_3_acc_9: 0.2115 - dense_3_acc_10: 0.08 - ETA: 3s - loss: 17.1318 - dense_3_loss_1: 1.3396 - dense_3_loss_2: 1.1188 - dense_3_loss_3: 1.8239 - dense_3_loss_4: 2.7118 - dense_3_loss_5: 0.8426 - dense_3_loss_6: 1.3397 - dense_3_loss_7: 2.6482 - dense_3_loss_8: 0.9550 - dense_3_loss_9: 1.7302 - dense_3_loss_10: 2.6220 - dense_3_acc_1: 0.4520 - dense_3_acc_2: 0.6388 - dense_3_acc_3: 0.2941 - dense_3_acc_4: 0.0606 - dense_3_acc_5: 0.9281 - dense_3_acc_6: 0.3128 - dense_3_acc_7: 0.0524 - dense_3_acc_8: 0.9273 - dense_3_acc_9: 0.2134 - dense_3_acc_10: 0.08 - ETA: 2s - loss: 17.0567 - dense_3_loss_1: 1.3292 - dense_3_loss_2: 1.1093 - dense_3_loss_3: 1.8168 - dense_3_loss_4: 2.7070 - dense_3_loss_5: 0.8332 - dense_3_loss_6: 1.3324 - dense_3_loss_7: 2.6425 - dense_3_loss_8: 0.9445 - dense_3_loss_9: 1.7249 - dense_3_loss_10: 2.6170 - dense_3_acc_1: 0.4576 - dense_3_acc_2: 0.6423 - dense_3_acc_3: 0.2960 - dense_3_acc_4: 0.0617 - dense_3_acc_5: 0.9290 - dense_3_acc_6: 0.3168 - dense_3_acc_7: 0.0534 - dense_3_acc_8: 0.9282 - dense_3_acc_9: 0.2148 - dense_3_acc_10: 0.09 - ETA: 2s - loss: 16.9840 - dense_3_loss_1: 1.3192 - dense_3_loss_2: 1.0996 - dense_3_loss_3: 1.8102 - dense_3_loss_4: 2.7028 - dense_3_loss_5: 0.8241 - dense_3_loss_6: 1.3239 - dense_3_loss_7: 2.6360 - dense_3_loss_8: 0.9344 - dense_3_loss_9: 1.7203 - dense_3_loss_10: 2.6136 - dense_3_acc_1: 0.4631 - dense_3_acc_2: 0.6461 - dense_3_acc_3: 0.2970 - dense_3_acc_4: 0.0624 - dense_3_acc_5: 0.9298 - dense_3_acc_6: 0.3212 - dense_3_acc_7: 0.0555 - dense_3_acc_8: 0.9290 - dense_3_acc_9: 0.2165 - dense_3_acc_10: 0.09 - ETA: 2s - loss: 16.9097 - dense_3_loss_1: 1.3094 - dense_3_loss_2: 1.0905 - dense_3_loss_3: 1.8034 - dense_3_loss_4: 2.6981 - dense_3_loss_5: 0.8151 - dense_3_loss_6: 1.3146 - dense_3_loss_7: 2.6308 - dense_3_loss_8: 0.9242 - dense_3_loss_9: 1.7142 - dense_3_loss_10: 2.6094 - dense_3_acc_1: 0.4678 - dense_3_acc_2: 0.6494 - dense_3_acc_3: 0.2990 - dense_3_acc_4: 0.0633 - dense_3_acc_5: 0.9306 - dense_3_acc_6: 0.3263 - dense_3_acc_7: 0.0570 - dense_3_acc_8: 0.9298 - dense_3_acc_9: 0.2191 - dense_3_acc_10: 0.09 - ETA: 2s - loss: 16.8394 - dense_3_loss_1: 1.2993 - dense_3_loss_2: 1.0816 - dense_3_loss_3: 1.7976 - dense_3_loss_4: 2.6938 - dense_3_loss_5: 0.8063 - dense_3_loss_6: 1.3066 - dense_3_loss_7: 2.6256 - dense_3_loss_8: 0.9142 - dense_3_loss_9: 1.7079 - dense_3_loss_10: 2.6064 - dense_3_acc_1: 0.4729 - dense_3_acc_2: 0.6527 - dense_3_acc_3: 0.3000 - dense_3_acc_4: 0.0639 - dense_3_acc_5: 0.9313 - dense_3_acc_6: 0.3307 - dense_3_acc_7: 0.0589 - dense_3_acc_8: 0.9306 - dense_3_acc_9: 0.2213 - dense_3_acc_10: 0.09 - ETA: 1s - loss: 16.7707 - dense_3_loss_1: 1.2901 - dense_3_loss_2: 1.0730 - dense_3_loss_3: 1.7916 - dense_3_loss_4: 2.6885 - dense_3_loss_5: 0.7978 - dense_3_loss_6: 1.2981 - dense_3_loss_7: 2.6208 - dense_3_loss_8: 0.9045 - dense_3_loss_9: 1.7033 - dense_3_loss_10: 2.6031 - dense_3_acc_1: 0.4774 - dense_3_acc_2: 0.6555 - dense_3_acc_3: 0.3005 - dense_3_acc_4: 0.0649 - dense_3_acc_5: 0.9321 - dense_3_acc_6: 0.3360 - dense_3_acc_7: 0.0601 - dense_3_acc_8: 0.9313 - dense_3_acc_9: 0.2219 - dense_3_acc_10: 0.09 - ETA: 1s - loss: 16.7024 - dense_3_loss_1: 1.2808 - dense_3_loss_2: 1.0639 - dense_3_loss_3: 1.7848 - dense_3_loss_4: 2.6843 - dense_3_loss_5: 0.7895 - dense_3_loss_6: 1.2906 - dense_3_loss_7: 2.6155 - dense_3_loss_8: 0.8949 - dense_3_loss_9: 1.6983 - dense_3_loss_10: 2.5995 - dense_3_acc_1: 0.4822 - dense_3_acc_2: 0.6588 - dense_3_acc_3: 0.3021 - dense_3_acc_4: 0.0658 - dense_3_acc_5: 0.9328 - dense_3_acc_6: 0.3401 - dense_3_acc_7: 0.0623 - dense_3_acc_8: 0.9321 - dense_3_acc_9: 0.2235 - dense_3_acc_10: 0.09 - ETA: 1s - loss: 16.6357 - dense_3_loss_1: 1.2713 - dense_3_loss_2: 1.0554 - dense_3_loss_3: 1.7779 - dense_3_loss_4: 2.6797 - dense_3_loss_5: 0.7812 - dense_3_loss_6: 1.2826 - dense_3_loss_7: 2.6100 - dense_3_loss_8: 0.8856 - dense_3_loss_9: 1.6961 - dense_3_loss_10: 2.5960 - dense_3_acc_1: 0.4872 - dense_3_acc_2: 0.6616 - dense_3_acc_3: 0.3044 - dense_3_acc_4: 0.0672 - dense_3_acc_5: 0.9335 - dense_3_acc_6: 0.3445 - dense_3_acc_7: 0.0644 - dense_3_acc_8: 0.9328 - dense_3_acc_9: 0.2244 - dense_3_acc_10: 0.09 - ETA: 1s - loss: 16.5697 - dense_3_loss_1: 1.2621 - dense_3_loss_2: 1.0473 - dense_3_loss_3: 1.7716 - dense_3_loss_4: 2.6753 - dense_3_loss_5: 0.7732 - dense_3_loss_6: 1.2752 - dense_3_loss_7: 2.6061 - dense_3_loss_8: 0.8764 - dense_3_loss_9: 1.6906 - dense_3_loss_10: 2.5919 - dense_3_acc_1: 0.4916 - dense_3_acc_2: 0.6646 - dense_3_acc_3: 0.3065 - dense_3_acc_4: 0.0684 - dense_3_acc_5: 0.9343 - dense_3_acc_6: 0.3487 - dense_3_acc_7: 0.0654 - dense_3_acc_8: 0.9335 - dense_3_acc_9: 0.2262 - dense_3_acc_10: 0.09 - ETA: 1s - loss: 16.5037 - dense_3_loss_1: 1.2523 - dense_3_loss_2: 1.0385 - dense_3_loss_3: 1.7651 - dense_3_loss_4: 2.6716 - dense_3_loss_5: 0.7653 - dense_3_loss_6: 1.2675 - dense_3_loss_7: 2.6015 - dense_3_loss_8: 0.8675 - dense_3_loss_9: 1.6854 - dense_3_loss_10: 2.5891 - dense_3_acc_1: 0.4966 - dense_3_acc_2: 0.6678 - dense_3_acc_3: 0.3084 - dense_3_acc_4: 0.0691 - dense_3_acc_5: 0.9349 - dense_3_acc_6: 0.3534 - dense_3_acc_7: 0.0665 - dense_3_acc_8: 0.9342 - dense_3_acc_9: 0.2288 - dense_3_acc_10: 0.09 - ETA: 0s - loss: 16.4380 - dense_3_loss_1: 1.2426 - dense_3_loss_2: 1.0298 - dense_3_loss_3: 1.7590 - dense_3_loss_4: 2.6674 - dense_3_loss_5: 0.7575 - dense_3_loss_6: 1.2595 - dense_3_loss_7: 2.5968 - dense_3_loss_8: 0.8587 - dense_3_loss_9: 1.6805 - dense_3_loss_10: 2.5863 - dense_3_acc_1: 0.5015 - dense_3_acc_2: 0.6708 - dense_3_acc_3: 0.3103 - dense_3_acc_4: 0.0696 - dense_3_acc_5: 0.9356 - dense_3_acc_6: 0.3577 - dense_3_acc_7: 0.0677 - dense_3_acc_8: 0.9349 - dense_3_acc_9: 0.2312 - dense_3_acc_10: 0.094110000/10000 [==============================] - ETA: 0s - loss: 16.3737 - dense_3_loss_1: 1.2333 - dense_3_loss_2: 1.0211 - dense_3_loss_3: 1.7526 - dense_3_loss_4: 2.6640 - dense_3_loss_5: 0.7498 - dense_3_loss_6: 1.2508 - dense_3_loss_7: 2.5925 - dense_3_loss_8: 0.8501 - dense_3_loss_9: 1.6760 - dense_3_loss_10: 2.5834 - dense_3_acc_1: 0.5063 - dense_3_acc_2: 0.6739 - dense_3_acc_3: 0.3122 - dense_3_acc_4: 0.0705 - dense_3_acc_5: 0.9363 - dense_3_acc_6: 0.3627 - dense_3_acc_7: 0.0682 - dense_3_acc_8: 0.9356 - dense_3_acc_9: 0.2329 - dense_3_acc_10: 0.09 - ETA: 0s - loss: 16.3126 - dense_3_loss_1: 1.2241 - dense_3_loss_2: 1.0127 - dense_3_loss_3: 1.7469 - dense_3_loss_4: 2.6610 - dense_3_loss_5: 0.7424 - dense_3_loss_6: 1.2442 - dense_3_loss_7: 2.5886 - dense_3_loss_8: 0.8417 - dense_3_loss_9: 1.6708 - dense_3_loss_10: 2.5803 - dense_3_acc_1: 0.5109 - dense_3_acc_2: 0.6769 - dense_3_acc_3: 0.3135 - dense_3_acc_4: 0.0708 - dense_3_acc_5: 0.9369 - dense_3_acc_6: 0.3660 - dense_3_acc_7: 0.0693 - dense_3_acc_8: 0.9362 - dense_3_acc_9: 0.2350 - dense_3_acc_10: 0.09 - ETA: 0s - loss: 16.2541 - dense_3_loss_1: 1.2160 - dense_3_loss_2: 1.0061 - dense_3_loss_3: 1.7407 - dense_3_loss_4: 2.6575 - dense_3_loss_5: 0.7351 - dense_3_loss_6: 1.2370 - dense_3_loss_7: 2.5843 - dense_3_loss_8: 0.8334 - dense_3_loss_9: 1.6670 - dense_3_loss_10: 2.5769 - dense_3_acc_1: 0.5148 - dense_3_acc_2: 0.6792 - dense_3_acc_3: 0.3154 - dense_3_acc_4: 0.0711 - dense_3_acc_5: 0.9376 - dense_3_acc_6: 0.3696 - dense_3_acc_7: 0.0698 - dense_3_acc_8: 0.9369 - dense_3_acc_9: 0.2364 - dense_3_acc_10: 0.09 - 20s 2ms/step - loss: 16.1926 - dense_3_loss_1: 1.2069 - dense_3_loss_2: 0.9976 - dense_3_loss_3: 1.7341 - dense_3_loss_4: 2.6537 - dense_3_loss_5: 0.7279 - dense_3_loss_6: 1.2297 - dense_3_loss_7: 2.5799 - dense_3_loss_8: 0.8255 - dense_3_loss_9: 1.6625 - dense_3_loss_10: 2.5748 - dense_3_acc_1: 0.5195 - dense_3_acc_2: 0.6824 - dense_3_acc_3: 0.3172 - dense_3_acc_4: 0.0715 - dense_3_acc_5: 0.9382 - dense_3_acc_6: 0.3739 - dense_3_acc_7: 0.0704 - dense_3_acc_8: 0.9375 - dense_3_acc_9: 0.2374 - dense_3_acc_10: 0.0964





<keras.callbacks.History at 0x20d7f3e8dd8>

While training you can see the loss as well as the accuracy on each of the 10 positions of the output. The table below gives you an example of what the accuracies could be if the batch had 2 examples:

這裏寫圖片描述

Thus, dense_2_acc_8: 0.89 means that you are predicting the 7th character of the output correctly 89% of the time in the current batch of data.

We have run this model for longer, and saved the weights. Run the next cell to load our weights. (By training a model for several minutes, you should be able to obtain a model of similar accuracy, but loading our model will save you time.)

model.load_weights('models/model.h5')

You can now see the results on new examples.

EXAMPLES = ['3 May 1979', '5 April 09', '21th of August 2016', 'Tue 10 Jul 2007', 'Saturday May 9 2018', 'March 3 2001', 'March 3rd 2001', '1 March 2001']
for example in EXAMPLES:

    source = string_to_int(example, Tx, human_vocab)
    # source = np.array(list(map(lambda x: to_categorical(x, num_classes=len(human_vocab)), source))).swapaxes(0,1)

    source = np.array(list(map(lambda x: to_categorical(x, num_classes=len(human_vocab)), source)))
    source = source.reshape((1,source.shape[0],source.shape[1]))

    prediction = model.predict([source, s0, c0])
    prediction = np.argmax(prediction, axis = -1)
    output = [inv_machine_vocab[int(i)] for i in prediction]

    print("source:", example)
    print("output:", ''.join(output))
source: 3 May 1979
output: 1979-05-03
source: 5 April 09
output: 2009-05-05
source: 21th of August 2016
output: 2016-08-21
source: Tue 10 Jul 2007
output: 2007-07-10
source: Saturday May 9 2018
output: 2018-05-09
source: March 3 2001
output: 2001-03-03
source: March 3rd 2001
output: 2001-03-03
source: 1 March 2001
output: 2001-03-01

錯誤:ValueError: Error when checking : expected input_2 to have 3 dimensions, but got array with shape (37, 30)

https://blog.csdn.net/Exupery_/article/details/79548104 這篇 blog 中分析的原因是 Keras 的版本問題,修改原代碼後可正常運行。

You can also change these examples to test with your own examples. The next part will give you a better sense on what the attention mechanism is doing–i.e., what part of the input the network is paying attention to when generating a particular output character.

3 - Visualizing Attention (Optional / Ungraded)

Since the problem has a fixed output length of 10, it is also possible to carry out this task using 10 different softmax units to generate the 10 characters of the output. But one advantage of the attention model is that each part of the output (say the month) knows it needs to depend only on a small part of the input (the characters in the input giving the month). We can visualize what part of the output is looking at what part of the input.

由於問題的輸出長度固定爲 10,因此也可以使用 10 個不同的 softmax 單位執行此任務以生成輸出的 10 個字符。 但是,注意模型的一個優點是輸出的每個部分(比如說月份)都知道它只需要依賴一小部分輸入(輸入給出月份的字符)。 我們可以看到輸出的哪一部分正在查看輸入的哪一部分。

Consider the task of translating “Saturday 9 May 2018” to “2018-05-09”. If we visualize the computed αt,t we get this:

這裏寫圖片描述

Figure 8: Full Attention Map

Notice how the output ignores the “Saturday” portion of the input. None of the output timesteps are paying much attention to that portion of the input. We see also that 9 has been translated as 09 and May has been correctly translated into 05, with the output paying attention to the parts of the input it needs to to make the translation. The year mostly requires it to pay attention to the input’s “18” in order to generate “2018.”

注意輸出如何忽略輸入的“星期六”部分。 沒有一個輸出時間步驟對輸入的那部分非常重視。 我們還看到,9被翻譯爲09,5月被正確翻譯成05,輸出注意輸入翻譯所需的部分。 這一年大多需要注意輸入的“18”以產生“2018”。

3.1 - Getting the activations from the network

Lets now visualize the attention values in your network. We’ll propagate an example through the network, then visualize the values of αt,t .

To figure out where the attention values are located, let’s start by printing a summary of the model .

現在讓我們看到您網絡中的關注值。 我們將通過網絡傳播一個例子,然後可視化 αt,t 的值。

要計算注意力值的位置,我們首先打印模型的摘要。

model.summary()
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_2 (InputLayer)            (None, 30, 37)       0                                            
__________________________________________________________________________________________________
s0 (InputLayer)                 (None, 64)           0                                            
__________________________________________________________________________________________________
bidirectional_2 (Bidirectional) (None, 30, 64)       17920       input_2[0][0]                    
__________________________________________________________________________________________________
repeat_vector_1 (RepeatVector)  (None, 30, 64)       0           s0[0][0]                         
                                                                 lstm_1[0][0]                     
                                                                 lstm_1[1][0]                     
                                                                 lstm_1[2][0]                     
                                                                 lstm_1[3][0]                     
                                                                 lstm_1[4][0]                     
                                                                 lstm_1[5][0]                     
                                                                 lstm_1[6][0]                     
                                                                 lstm_1[7][0]                     
                                                                 lstm_1[8][0]                     
__________________________________________________________________________________________________
concatenate_1 (Concatenate)     (None, 30, 128)      0           bidirectional_2[0][0]            
                                                                 repeat_vector_1[1][0]            
                                                                 bidirectional_2[0][0]            
                                                                 repeat_vector_1[2][0]            
                                                                 bidirectional_2[0][0]            
                                                                 repeat_vector_1[3][0]            
                                                                 bidirectional_2[0][0]            
                                                                 repeat_vector_1[4][0]            
                                                                 bidirectional_2[0][0]            
                                                                 repeat_vector_1[5][0]            
                                                                 bidirectional_2[0][0]            
                                                                 repeat_vector_1[6][0]            
                                                                 bidirectional_2[0][0]            
                                                                 repeat_vector_1[7][0]            
                                                                 bidirectional_2[0][0]            
                                                                 repeat_vector_1[8][0]            
                                                                 bidirectional_2[0][0]            
                                                                 repeat_vector_1[9][0]            
                                                                 bidirectional_2[0][0]            
                                                                 repeat_vector_1[10][0]           
__________________________________________________________________________________________________
dense_1 (Dense)                 (None, 30, 10)       1290        concatenate_1[0][0]              
                                                                 concatenate_1[1][0]              
                                                                 concatenate_1[2][0]              
                                                                 concatenate_1[3][0]              
                                                                 concatenate_1[4][0]              
                                                                 concatenate_1[5][0]              
                                                                 concatenate_1[6][0]              
                                                                 concatenate_1[7][0]              
                                                                 concatenate_1[8][0]              
                                                                 concatenate_1[9][0]              
__________________________________________________________________________________________________
dense_2 (Dense)                 (None, 30, 1)        11          dense_1[0][0]                    
                                                                 dense_1[1][0]                    
                                                                 dense_1[2][0]                    
                                                                 dense_1[3][0]                    
                                                                 dense_1[4][0]                    
                                                                 dense_1[5][0]                    
                                                                 dense_1[6][0]                    
                                                                 dense_1[7][0]                    
                                                                 dense_1[8][0]                    
                                                                 dense_1[9][0]                    
__________________________________________________________________________________________________
attention_weights (Activation)  (None, 30, 1)        0           dense_2[0][0]                    
                                                                 dense_2[1][0]                    
                                                                 dense_2[2][0]                    
                                                                 dense_2[3][0]                    
                                                                 dense_2[4][0]                    
                                                                 dense_2[5][0]                    
                                                                 dense_2[6][0]                    
                                                                 dense_2[7][0]                    
                                                                 dense_2[8][0]                    
                                                                 dense_2[9][0]                    
__________________________________________________________________________________________________
dot_1 (Dot)                     (None, 1, 64)        0           attention_weights[0][0]          
                                                                 bidirectional_2[0][0]            
                                                                 attention_weights[1][0]          
                                                                 bidirectional_2[0][0]            
                                                                 attention_weights[2][0]          
                                                                 bidirectional_2[0][0]            
                                                                 attention_weights[3][0]          
                                                                 bidirectional_2[0][0]            
                                                                 attention_weights[4][0]          
                                                                 bidirectional_2[0][0]            
                                                                 attention_weights[5][0]          
                                                                 bidirectional_2[0][0]            
                                                                 attention_weights[6][0]          
                                                                 bidirectional_2[0][0]            
                                                                 attention_weights[7][0]          
                                                                 bidirectional_2[0][0]            
                                                                 attention_weights[8][0]          
                                                                 bidirectional_2[0][0]            
                                                                 attention_weights[9][0]          
                                                                 bidirectional_2[0][0]            
__________________________________________________________________________________________________
c0 (InputLayer)                 (None, 64)           0                                            
__________________________________________________________________________________________________
lstm_1 (LSTM)                   [(None, 64), (None,  33024       dot_1[0][0]                      
                                                                 s0[0][0]                         
                                                                 c0[0][0]                         
                                                                 dot_1[1][0]                      
                                                                 lstm_1[0][0]                     
                                                                 lstm_1[0][2]                     
                                                                 dot_1[2][0]                      
                                                                 lstm_1[1][0]                     
                                                                 lstm_1[1][2]                     
                                                                 dot_1[3][0]                      
                                                                 lstm_1[2][0]                     
                                                                 lstm_1[2][2]                     
                                                                 dot_1[4][0]                      
                                                                 lstm_1[3][0]                     
                                                                 lstm_1[3][2]                     
                                                                 dot_1[5][0]                      
                                                                 lstm_1[4][0]                     
                                                                 lstm_1[4][2]                     
                                                                 dot_1[6][0]                      
                                                                 lstm_1[5][0]                     
                                                                 lstm_1[5][2]                     
                                                                 dot_1[7][0]                      
                                                                 lstm_1[6][0]                     
                                                                 lstm_1[6][2]                     
                                                                 dot_1[8][0]                      
                                                                 lstm_1[7][0]                     
                                                                 lstm_1[7][2]                     
                                                                 dot_1[9][0]                      
                                                                 lstm_1[8][0]                     
                                                                 lstm_1[8][2]                     
__________________________________________________________________________________________________
dense_3 (Dense)                 (None, 11)           715         lstm_1[0][0]                     
                                                                 lstm_1[1][0]                     
                                                                 lstm_1[2][0]                     
                                                                 lstm_1[3][0]                     
                                                                 lstm_1[4][0]                     
                                                                 lstm_1[5][0]                     
                                                                 lstm_1[6][0]                     
                                                                 lstm_1[7][0]                     
                                                                 lstm_1[8][0]                     
                                                                 lstm_1[9][0]                     
==================================================================================================
Total params: 52,960
Trainable params: 52,960
Non-trainable params: 0
__________________________________________________________________________________________________

Navigate through the output of model.summary() above. You can see that the layer named attention_weights outputs the alphas of shape (m, 30, 1) before dot_2 computes the context vector for every time step t=0,,Ty1 . Lets get the activations from this layer.

The function attention_map() pulls out the attention values from your model and plots them.

attention_map = plot_attention_map(model, human_vocab, inv_machine_vocab, "Tuesday 09 Oct 1993", num = 7, n_s = 64)
<matplotlib.figure.Figure at 0x20d10aa38d0>

這裏寫圖片描述

On the generated plot you can observe the values of the attention weights for each character of the predicted output. Examine this plot and check that where the network is paying attention makes sense to you.

In the date translation application, you will observe that most of the time attention helps predict the year, and hasn’t much impact on predicting the day/month.

在生成的圖上,您可以觀察預測輸出的每個字符的注意力權重值。 檢查此圖並檢查網絡注意力在哪裏對您有意義。

在日期翻譯應用程序中,您會發現大多數時間注意有助於預測年份,並且對預測日/月沒有太大影響。

Congratulations!

You have come to the end of this assignment

Here’s what you should remember from this notebook:

  • Machine translation models can be used to map from one sequence to another. They are useful not just for translating human languages (like French->English) but also for tasks like date format translation.
  • An attention mechanism allows a network to focus on the most relevant parts of the input when producing a specific part of the output.
  • A network using an attention mechanism can translate from inputs of length Tx to outputs of length Ty , where Tx and Ty can be different.
  • You can visualize attention weights αt,t to see what the network is paying attention to while generating each output.

  • 機器翻譯模型可用於從一個序列映射到另一個序列。 它們不僅用於翻譯人類語言(如法語 - >英語),還用於日期格式翻譯等任務。

  • 注意機制允許網絡在產生輸出的特定部分時專注於輸入的最相關部分。

  • 使用注意機制的網絡可以從長度爲 Tx 的輸入轉換爲長度爲Ty 的輸出,其中 TxTy 可以不同。

  • 您可以將注意力權重αt,t 可視化,以便在生成每個輸出時查看網絡正在關注的內容。

Congratulations on finishing this assignment! You are now able to implement an attention model and use it to learn complex mappings from one sequence to another.

發佈了186 篇原創文章 · 獲贊 44 · 訪問量 14萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章