UFLDL——Exercise: Sparse Autoencoder 稀疏自動編碼

實驗要求可以參考deeplearning的tutorial,Exercise:Sparse Autoencoder。稀疏自動編碼的原理可以參照之前的博文,神經網絡, 稀疏自動編碼   。


1. 神經網絡結構:

實驗是實現三層的稀疏自動編碼神經網絡,神經網絡結構包括輸入層64個neuron,隱含層25個neuron(都不包括bias結點),輸出層和輸入層相同的neuron的個數。

2. 訓練數據:

實驗中的原始數據是10副512×512大小的灰度圖像,存儲在“IMAGES.mat”文件中。下圖是其中的一張圖像。



我們隨機中10副圖像中挑選一個,然後再從該圖像中隨機的選一個8*8的圖像patch,得到的這個patch作爲一個訓練數據,重複這個隨機過程10000,最後得到10000數據組成的訓練集,存儲在64×10000 的矩陣,每一列代表一個數據。

 

下圖是總10000個數據中隨機挑選出100個進行顯示。



3. 損失函數(loss function)

稀疏自動編碼的損失函數由三部分組成,公式如下:



4. 偏導數(partial derivatives)

偏導數的計算是通過BP算法,需要注意是,由於在實驗中使用的是batch的優化方法,所以偏導數計算的時候對所有樣本的偏導數做了一個求和操作。

 

5.梯度檢驗(Gradient checking)

有網友說他們在自己的電腦上跑Gradient checking這步的時候用了1個多小時,但不知道是不是我的電腦配置比較高,我才跑了不到4分鐘。


6. 用L-BFGS算法進行訓練

因爲我們已經有了損失函數和相應參數的偏導數,所以和直接用成熟的L-BFGS算法的包,最後算法到底最大迭代次數400的時候,停止迭代。


7. 實驗結果:

下圖顯示的是第一層到第二層的參數,由於輸入層爲64個neuron,隱含層爲25個neuron,所以下面共有25個patch,每一個patch大小爲8*8.



源代碼下載

sampleIMAGES.m


function patches = sampleIMAGES()
% sampleIMAGES
% Returns 10000 patches for training

load IMAGES;    % load images from disk 

patchsize = 8;  % we'll use 8x8 patches 
numpatches = 10000;

% Initialize patches with zeros.  Your code will fill in this matrix--one
% column per patch, 10000 columns. 
patches = zeros(patchsize*patchsize, numpatches);

%% ---------- YOUR CODE HERE --------------------------------------
%  Instructions: Fill in the variable called "patches" using data 
%  from IMAGES.  
%  
%  IMAGES is a 3D array containing 10 images
%  For instance, IMAGES(:,:,6) is a 512x512 array containing the 6th image,
%  and you can type "imagesc(IMAGES(:,:,6)), colormap gray;" to visualize
%  it. (The contrast on these images look a bit off because they have
%  been preprocessed using using "whitening."  See the lecture notes for
%  more details.) As a second example, IMAGES(21:30,21:30,1) is an image
%  patch corresponding to the pixels in the block (21,21) to (30,30) of
%  Image 1

for i = 1:numpatches
    x = ceil(rand(1)*505);
    y = ceil(rand(1)*505);
    z = ceil(rand(1)*10);
    patch = IMAGES(x : x+patchsize-1, y : y+patchsize-1, z);
    patches(:,i) = patch(:);    
end



%% ---------------------------------------------------------------
% For the autoencoder to work well we need to normalize the data
% Specifically, since the output of the network is bounded between [0,1]
% (due to the sigmoid activation function), we have to make sure 
% the range of pixel values is also bounded between [0,1]
patches = normalizeData(patches);

end


%% ---------------------------------------------------------------
function patches = normalizeData(patches)

% Squash data to [0.1, 0.9] since we use sigmoid as the activation
% function in the output layer

% Remove DC (mean of images). 
patches = bsxfun(@minus, patches, mean(patches));

% Truncate to +/-3 standard deviations and scale to -1 to 1
pstd = 3 * std(patches(:));
patches = max(min(patches, pstd), -pstd) / pstd;

% Rescale from [-1,1] to [0.1,0.9]
patches = (patches + 1) * 0.4 + 0.1;

end

sparseAutoencoderCost.m

function [cost,grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, ...
                                             lambda, sparsityParam, beta, data)

% visibleSize: the number of input units (probably 64) 
% hiddenSize: the number of hidden units (probably 25) 
% lambda: weight decay parameter
% sparsityParam: The desired average activation for the hidden units (denoted in the lecture
%                           notes by the greek alphabet rho, which looks like a lower-case "p").
% beta: weight of sparsity penalty term
% data: Our 64x10000 matrix containing the training data.  So, data(:,i) is the i-th training example. 
  
% The input theta is a vector (because minFunc expects the parameters to be a vector). 
% We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this 
% follows the notation convention of the lecture notes. 

W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize);
b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end);

% Cost and gradient variables (your code needs to compute these values). 
% Here, we initialize them to zeros. 
cost = 0;
W1grad = zeros(size(W1)); 
W2grad = zeros(size(W2));
b1grad = zeros(size(b1)); 
b2grad = zeros(size(b2));

%% ---------- YOUR CODE HERE --------------------------------------
%  Instructions: Compute the cost/optimization objective J_sparse(W,b) for the Sparse Autoencoder,
%                and the corresponding gradients W1grad, W2grad, b1grad, b2grad.
%
% W1grad, W2grad, b1grad and b2grad should be computed using backpropagation.
% Note that W1grad has the same dimensions as W1, b1grad has the same dimensions
% as b1, etc.  Your code should set W1grad to be the partial derivative of J_sparse(W,b) with
% respect to W1.  I.e., W1grad(i,j) should be the partial derivative of J_sparse(W,b) 
% with respect to the input parameter W1(i,j).  Thus, W1grad should be equal to the term 
% [(1/m) \Delta W^{(1)} + \lambda W^{(1)}] in the last block of pseudo-code in Section 2.2 
% of the lecture notes (and similarly for W2grad, b1grad, b2grad).
% 
% Stated differently, if we were using batch gradient descent to optimize the parameters,
% the gradient descent update to W1 would be W1 := W1 - alpha * W1grad, and similarly for W2, b1, b2. 
% 


% data = [ones(1,size(data,2)); data];
[n m] = size(data);

z2 = W1* data + repmat(b1,1,m);
a2 = sigmoid(z2);
z3 = W2 * a2 + repmat(b2,1,m); 
a3 = sigmoid(z3);

phat = mean(a2,2);
p = repmat(sparsityParam, size(phat));
sparse = p .* log(p ./ phat) + (1-p) .* log((1-p) ./ (1-phat));

%J = trace((data - a3)' * (data - a3)) / (size(data,2)*2);
J = sum(sum((a3-data).^2)) / (m*2);

regu = (W1(:)'*W1(:) + W2(:)'*W2(:))/2;

cost = J + lambda*regu + beta * sum(sparse);



delta3 = -1* (data-a3).*a3.*(1-a3);
delta2 = (W2'*delta3+beta*repmat(-p./phat+(1-p)./(1-phat),1,size(data,2))).*a2.*(1-a2); 


W2grad = delta3*a2'/m;  
b2grad = mean(delta3,2);  
W1grad = delta2*data'/m;  
b1grad = mean(delta2,2); 

W2grad = W2grad + lambda*W2;  
W1grad = W1grad + lambda*W1;  


%-------------------------------------------------------------------
% After computing the cost and gradient, we will convert the gradients back
% to a vector format (suitable for minFunc).  Specifically, we will unroll
% your gradient matrices into a vector.

grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)];

end

%-------------------------------------------------------------------
% Here's an implementation of the sigmoid function, which you may find useful
% in your computation of the costs and the gradients.  This inputs a (row or
% column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). 

function sigm = sigmoid(x)
  
    sigm = 1 ./ (1 + exp(-x));
end






發佈了24 篇原創文章 · 獲贊 29 · 訪問量 25萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章