常用的幾種類型的ADC基本原理及特點

AD轉換器的分類

下面簡要介紹常用的幾種類型的基本原理及特點:積分型、逐次逼近型、並行比較型/串並行型、Σ-Δ調製型、電容陣列逐次比較型及壓頻變換型。

 

1)積分型(如TLC7135)

積分型AD工作原理是將輸入電壓轉換成時間(脈衝寬度信號)或頻率(脈衝頻率),然後由定時器/計數器獲得數字值。其優點是用簡單電路就能獲得高分辨率,但缺點是由於轉換精度依賴於積分時間,因此轉換速率極低。初期的單片AD轉換器大多采用積分型,現在逐次比較型已逐步成爲主流。

2)逐次比較型(如TLC0831)

逐次比較型AD由一個比較器和DA轉換器通過逐次比較邏輯構成,從MSB開始,順序地對每一位將輸入電壓與內置DA轉換器輸出進行比較,經n次比較而輸出數字值。其電路規模屬於中等。其優點是速度較高、功耗低,在低分辯率(<12位)時價格便宜,但高精度(>12位)時價格很高。

3)並行比較型/串並行比較型(如TLC5510)

並行比較型AD採用多個比較器,僅作一次比較而實行轉換,又稱FLash(快速)型。由於轉換速率極高,n位的轉換需要2n-1個比較器,因此電路規模也極大,價格也高,只適用於視頻AD轉換器等速度特別高的領域。

串並行比較型AD結構上介於並行型和逐次比較型之間,最典型的是由2個n/2位的並行型AD轉換器配合DA轉換器組成,用兩次比較實行轉換,所以稱爲Half flash(半快速)型。還有分成三步或多步實現AD轉換的叫做分級(Multistep/Subrangling)型AD,而從轉換時序角度又可稱爲流水線(Pipelined)型AD,現代的分級型AD中還加入了對多次轉換結果作數字運算而修正特性等功能。這類AD速度比逐次比較型高,電路規模比並行型小。

4)Σ-Δ(Sigma?/FONT>delta)調製型(如AD7705)

Σ-Δ型AD由積分器、比較器、1位DA轉換器和數字濾波器等組成。原理上近似於積分型,將輸入電壓轉換成時間(脈衝寬度)信號,用數字濾波器處理後得到數字值。電路的數字部分基本上容易單片化,因此容易做到高分辨率。主要用於音頻和測量。

5)電容陣列逐次比較型

電容陣列逐次比較型AD在內置DA轉換器中採用電容矩陣方式,也可稱爲電荷再分配型。一般的電阻陣列DA轉換器中多數電阻的值必須一致,在單芯片上生成高精度的電阻並不容易。如果用電容陣列取代電阻陣列,可以用低廉成本製成高精度單片AD轉換器。最近的逐次比較型AD轉換器大多爲電容陣列式的。

6)壓頻變換型(如AD650)

壓頻變換型(Voltage-Frequency Converter)是通過間接轉換方式實現模數轉換的。其原理是首先將輸入的模擬信號轉換成頻率,然後用計數器將頻率轉換成數字量。從理論上講這種AD的分辨率幾乎可以無限增加,只要採樣的時間能夠滿足輸出頻率分辨率要求的累積脈衝個數的寬度。其優點是分辯率高、功耗低、價格低,但是需要外部計數電路共同完成AD轉換。

發佈了56 篇原創文章 · 獲贊 10 · 訪問量 14萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章