Java線程源碼解析之yield和sleep

概述

由於Thread的yield和sleep有一定的相似性,因此放在一起進行分析。yield會釋放CPU資源,讓優先級更高(至少是相同)的線程獲得執行機會;sleep當傳入參數爲0時,和yield相同;當傳入參數大於0時,也是釋放CPU資源,當可以讓其它任何優先級的線程獲得執行機會;

假設當前進程只有main線程,當調用yield之後,main線程會繼續運行,因爲沒有比它優先級更高的線程;而調用sleep之後,mian線程會進入TIMED_WAITING狀態,不會繼續運行;

yield

Thread.sleep底層是通過JVM_Yield方法實現的(見jvm.cpp):

JVM_ENTRY(void, JVM_Yield(JNIEnv *env, jclass threadClass))
  JVMWrapper("JVM_Yield");
  //檢查是否設置了DontYieldALot參數,默認爲fasle
  //如果設置爲true,直接返回
  if (os::dont_yield()) return;
 //如果ConvertYieldToSleep=true(默認爲false),調用os::sleep,否則調用os::yield
  if (ConvertYieldToSleep) {
    os::sleep(thread, MinSleepInterval, false);//sleep 1ms
  } else {
    os::yield();
  }
JVM_END

從上面知道,實際上調用的是os::yield:

//sched_yield是linux kernel提供的API,它會使調用線程放棄CPU使用權,加入到同等優先級隊列的末尾;
//如果調用線程是優先級最高的唯一線程,yield方法返回後,調用線程會繼續運行;
//因此可以知道,對於和調用線程相同或更高優先級的線程來說,yield方法會給予了它們一次運行的機會;
void os::yield() {
  sched_yield();
}

sleep

Thread.sleep最終調用JVM_Sleep方法:

JVM_ENTRY(void, JVM_Sleep(JNIEnv* env, jclass threadClass, jlong millis))
  JVMWrapper("JVM_Sleep");

  if (millis < 0) {//參數校驗
    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
  }

  //如果線程已經中斷,拋出中斷異常,關於中斷的實現,在另一篇文章中會講解
  if (Thread::is_interrupted (THREAD, true) && !HAS_PENDING_EXCEPTION) {
    THROW_MSG(vmSymbols::java_lang_InterruptedException(), "sleep interrupted");
  }
 //設置線程狀態爲SLEEPING
  JavaThreadSleepState jtss(thread);

  EventThreadSleep event;

  if (millis == 0) {
    //如果設置了ConvertSleepToYield(默認爲true),和yield效果相同
    if (ConvertSleepToYield) {
      os::yield();
    } else {//否則調用os::sleep方法
      ThreadState old_state = thread->osthread()->get_state();
      thread->osthread()->set_state(SLEEPING);
      os::sleep(thread, MinSleepInterval, false);//sleep 1ms
      thread->osthread()->set_state(old_state);
    }
  } else {//參數大於0
   //保存初始狀態,返回時恢復原狀態
    ThreadState old_state = thread->osthread()->get_state();
    //osthread->thread status mapping:
    // NEW->NEW
    //RUNNABLE->RUNNABLE
    //BLOCKED_ON_MONITOR_ENTER->BLOCKED
    //IN_OBJECT_WAIT,PARKED->WAITING
    //SLEEPING,IN_OBJECT_WAIT_TIMED,PARKED_TIMED->TIMED_WAITING
    //TERMINATED->TERMINATED
    thread->osthread()->set_state(SLEEPING);
    //調用os::sleep方法,如果發生中斷,拋出異常
    if (os::sleep(thread, millis, true) == OS_INTRPT) {
      if (!HAS_PENDING_EXCEPTION) {
        if (event.should_commit()) {
          event.set_time(millis);
          event.commit();
        }
        THROW_MSG(vmSymbols::java_lang_InterruptedException(), "sleep interrupted");
      }
    }
    thread->osthread()->set_state(old_state);//恢復osThread狀態
  }
  if (event.should_commit()) {
    event.set_time(millis);
    event.commit();
  }
JVM_END

os::sleep的源碼如下:

int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  assert(thread == Thread::current(),  "thread consistency check");
  //線程有如下幾個成員變量:
  //ParkEvent * _ParkEvent ;          // for synchronized()
  //ParkEvent * _SleepEvent ;        // for Thread.sleep
  //ParkEvent * _MutexEvent ;      // for native internal Mutex/Monitor
  //ParkEvent * _MuxEvent ;         // for low-level muxAcquire-muxRelease
  ParkEvent * const slp = thread->_SleepEvent ;
  slp->reset() ;
  OrderAccess::fence() ;

//如果millis>0,傳入interruptible=true,否則爲false
  if (interruptible) {
    jlong prevtime = javaTimeNanos();

    for (;;) {
      if (os::is_interrupted(thread, true)) {//判斷是否中斷
        return OS_INTRPT;
      }

      jlong newtime = javaTimeNanos();//獲取當前時間
      //如果linux不支持monotonic lock,有可能出現newtime<prevtime
      if (newtime - prevtime < 0) {
        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
      } else {
        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
      }

      if(millis <= 0) {
        return OS_OK;
      }

      prevtime = newtime;
      {
        assert(thread->is_Java_thread(), "sanity check");
        JavaThread *jt = (JavaThread *) thread;
        ThreadBlockInVM tbivm(jt);
        OSThreadWaitState osts(jt->osthread(), false );

        jt->set_suspend_equivalent();
        slp->park(millis);
        jt->check_and_wait_while_suspended();
      }
    }
  } else {//如果interruptible=false
   //設置osthread的狀態爲CONDVAR_WAIT
    OSThreadWaitState osts(thread->osthread(), false );
    jlong prevtime = javaTimeNanos();

    for (;;) {
      jlong newtime = javaTimeNanos();

      if (newtime - prevtime < 0) {
        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
      } else {
        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
      }

      if(millis <= 0) break ;

      prevtime = newtime;
      slp->park(millis);//底層調用pthread_cond_timedwait實現
    }
    return OS_OK ;
  }
}

通過閱讀源碼知道,原來sleep是通過pthread_cond_timedwait實現的,那麼爲什麼不通過linux的sleep實現呢?

  • pthread_cond_timedwait既可以堵塞在某個條件變量上,也可以設置超時時間;
  • sleep不能及時喚醒線程,最小精度爲秒;

可以看出pthread_cond_timedwait使用靈活,而且時間精度更高;

# 例子
通過strace可以查看代碼的系統調用情況,建立兩個類,一個調用Thread.sleep(),一個調用Thread.yield(),查看其系統調用情況:

  • Thread.sleep(0)
    Thread.sleep(0);
    System.out.println("hello");

    sleep0.png

    可以看到sched_yield的系統調用
  • Thread.sleep(nonzero)
    Thread.sleep(1000);
    System.out.println("hello");

sleep2.png


在其中並沒有看到pthread_cond_timedwait的調用,其實Java的線程有可兩種實現方式:

  1. LinuxThreads
  2. NPTL(Native POSIX Thread Library)
    // NPTL or LinuxThreads?
    static bool is_LinuxThreads()               { return !_is_NPTL; }
    static bool is_NPTL()                       { return _is_NPTL;  }
    可以通過如下命令查看到底是使用哪種線程實現:
    getconf GNU_LIBPTHREAD_VERSION

nptl.png

關於兩者之間的區別,請查看wiki。由於我的機器上採用的是2,因此無法看到ppthread_cond_timedwait的調用;
ppthread_cond_timedwait採用futex(Fast Userspace muTEXes)實現,因而可以看到對futex的調用;

關於JVM是如何決定採用哪種實現方式,可以查看如下方法(os_linux.cpp):

// detecting pthread library

void os::Linux::libpthread_init() {
  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
  // generic name for earlier versions.
  // Define macros here so we can build HotSpot on old systems.
# ifndef _CS_GNU_LIBC_VERSION
# define _CS_GNU_LIBC_VERSION 2
# endif
# ifndef _CS_GNU_LIBPTHREAD_VERSION
# define _CS_GNU_LIBPTHREAD_VERSION 3
# endif

  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
  if (n > 0) {
     char *str = (char *)malloc(n, mtInternal);
     confstr(_CS_GNU_LIBC_VERSION, str, n);
     os::Linux::set_glibc_version(str);
  } else {
     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
     static char _gnu_libc_version[32];
     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
     os::Linux::set_glibc_version(_gnu_libc_version);
  }
  //系統函數confstr獲取C庫信息
  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
  if (n > 0) {
     char *str = (char *)malloc(n, mtInternal);
     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
     // is the case. LinuxThreads has a hard limit on max number of threads.
     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
     // On the other hand, NPTL does not have such a limit, sysconf()
     // will return -1 and errno is not changed. Check if it is really NPTL.
     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
         strstr(str, "NPTL") &&
         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
       free(str);
       os::Linux::set_libpthread_version("linuxthreads");
     } else {
       os::Linux::set_libpthread_version(str);
     }
  } else {
    // glibc before 2.3.2 only has LinuxThreads.
    os::Linux::set_libpthread_version("linuxthreads");
  }

  if (strstr(libpthread_version(), "NPTL")) {
     os::Linux::set_is_NPTL();
  } else {
     os::Linux::set_is_LinuxThreads();
  }

  // LinuxThreads have two flavors: floating-stack mode, which allows variable
  // stack size; and fixed-stack mode. NPTL is always floating-stack.
  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
     os::Linux::set_is_floating_stack();
  }
}
  • Thread.yield
    Thread.yield();
    System.out.println("hello");

Paste_Image.png

和Thread.sleep(0)相同;

參考資料

  1. Linux 線程模型的比較:LinuxThreads 和 NPTL


作者:allanYan
鏈接:http://www.jianshu.com/p/0964124ae822
來源:簡書
著作權歸作者所有。商業轉載請聯繫作者獲得授權,非商業轉載請註明出處。
發佈了6 篇原創文章 · 獲贊 18 · 訪問量 19萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章