synchronized和lock的實現原理

本文轉載自http://wenku.baidu.com/view/41480552f01dc281e53af090.html?re=view

目前在Java中存在兩種鎖機制:synchronized和Lock,Lock接口及其實現類是JDK5增加的內容,其作者是大名鼎鼎的併發專家Doug Lea。本文並不比較synchronized與Lock孰優孰劣,只是介紹二者的實現原理。

數據同步需要依賴鎖,那鎖的同步又依賴誰?synchronized給出的答案是在軟件層面依賴JVM,而Lock給出的方案是在硬件層面依賴特殊的CPU指令,大家可能會進一步追問:JVM底層又是如何實現synchronized的?

一、synchronized的實現:

synrhronized關鍵字簡潔、清晰、語義明確,因此即使有了Lock接口,使用的還是非常廣泛。其應用層的語義是可以把任何一個非null對象 作爲"鎖",當synchronized作用在方法上時,鎖住的便是對象實例(this);當作用在靜態方法時鎖住的便是對象對應的Class實例,因爲 Class數據存在於永久帶,因此靜態方法鎖相當於該類的一個全局鎖;當synchronized作用於某一個對象實例時,鎖住的便是對應的代碼塊。在 HotSpot JVM實現中,鎖有個專門的名字:對象監視器。 

在java虛擬機中,每個對象和類在邏輯上都是和一個監視器相關聯的。 
對於對象來說,相關聯的監視器保護對象的實例變量。 
對於類來說,監視器保護類的類變量。

1. 線程狀態及狀態轉換

當多個線程同時請求某個對象監視器時,對象監視器會設置幾種狀態用來區分請求的線程:

Contention List:所有請求鎖的線程將被首先放置到該競爭隊列

Entry List:Contention List中那些有資格成爲候選人的線程被移到Entry List

Wait Set:那些調用wait方法被阻塞的線程被放置到Wait Set

OnDeck:任何時刻最多只能有一個線程正在競爭鎖,該線程稱爲OnDeck

Owner:獲得鎖的線程稱爲Owner

!Owner:釋放鎖的線程

下圖反映了個狀態轉換關係:

JVM底層又是如何實現synchronized的

新請求鎖的線程將首先被加入到ConetentionList中,當某個擁有鎖的線程(Owner狀態)調用unlock之後,如果發現 EntryList爲空則從ContentionList中移動線程到EntryList,下面說明下ContentionList和EntryList 的實現方式:

1.1 ContentionList 虛擬隊列

ContentionList並不是一個真正的Queue,而只是一個虛擬隊列,原因在於ContentionList是由Node及其next指 針邏輯構成,並不存在一個Queue的數據結構。ContentionList是一個後進先出(LIFO)的隊列,每次新加入Node時都會在隊頭進行, 通過CAS改變第一個節點的的指針爲新增節點,同時設置新增節點的next指向後續節點,而取得操作則發生在隊尾。顯然,該結構其實是個Lock- Free的隊列。

因爲只有Owner線程才能從隊尾取元素,也即線程出列操作無爭用,當然也就避免了CAS的ABA問題。

JVM底層又是如何實現synchronized的

1.2 EntryList

EntryList與ContentionList邏輯上同屬等待隊列,ContentionList會被線程併發訪問,爲了降低對 ContentionList隊尾的爭用,而建立EntryList。Owner線程在unlock時會從ContentionList中遷移線程到 EntryList,並會指定EntryList中的某個線程(一般爲Head)爲Ready(OnDeck)線程。Owner線程並不是把鎖傳遞給 OnDeck線程,只是把競爭鎖的權利交給OnDeck,OnDeck線程需要重新競爭鎖。這樣做雖然犧牲了一定的公平性,但極大的提高了整體吞吐量,在 Hotspot中把OnDeck的選擇行爲稱之爲“競爭切換”。

OnDeck線程獲得鎖後即變爲owner線程,無法獲得鎖則會依然留在EntryList中,考慮到公平性,在EntryList中的位置不 發生變化(依然在隊頭)。如果Owner線程被wait方法阻塞,則轉移到WaitSet隊列;如果在某個時刻被notify/notifyAll喚醒, 則再次轉移到EntryList。

2. 自旋鎖

那些處於ContetionList、EntryList、WaitSet中的線程均處於阻塞狀態,阻塞操作由操作系統完成(在Linxu下通 過pthread_mutex_lock函數)。線程被阻塞後便進入內核(Linux)調度狀態,這個會導致系統在用戶態與內核態之間來回切換,嚴重影響 鎖的性能

緩解上述問題的辦法便是自旋,其原理是:當發生爭用時,若Owner線程能在很短的時間內釋放鎖,則那些正在爭用線程可以稍微等一等(自旋), 在Owner線程釋放鎖後,爭用線程可能會立即得到鎖,從而避免了系統阻塞。但Owner運行的時間可能會超出了臨界值,爭用線程自旋一段時間後還是無法 獲得鎖,這時爭用線程則會停止自旋進入阻塞狀態(後退)。基本思路就是自旋,不成功再阻塞,儘量降低阻塞的可能性,這對那些執行時間很短的代碼塊來說有非 常重要的性能提高。自旋鎖有個更貼切的名字:自旋-指數後退鎖,也即複合鎖。很顯然,自旋在多處理器上纔有意義。

還有個問題是,線程自旋時做些啥?其實啥都不做,可以執行幾次for循環,可以執行幾條空的彙編指令,目的是佔着CPU不放,等待獲取鎖的機 會。所以說,自旋是把雙刃劍,如果旋的時間過長會影響整體性能,時間過短又達不到延遲阻塞的目的。顯然,自旋的週期選擇顯得非常重要,但這與操作系統、硬 件體系、系統的負載等諸多場景相關,很難選擇,如果選擇不當,不但性能得不到提高,可能還會下降,因此大家普遍認爲自旋鎖不具有擴展性。

自旋優化策略

對自旋鎖週期的選擇上,HotSpot認爲最佳時間應是一個線程上下文切換的時間,但目前並沒有做到。經過調查,目前只是通過彙編暫停了幾個CPU週期,除了自旋週期選擇,HotSpot還進行許多其他的自旋優化策略,具體如下:

如果平均負載小於CPUs則一直自旋

如果有超過(CPUs/2)個線程正在自旋,則後來線程直接阻塞

如果正在自旋的線程發現Owner發生了變化則延遲自旋時間(自旋計數)或進入阻塞

如果CPU處於節電模式則停止自旋

自旋時間的最壞情況是CPU的存儲延遲(CPU A存儲了一個數據,到CPU B得知這個數據直接的時間差)

自旋時會適當放棄線程優先級之間的差異

那synchronized實現何時使用了自旋鎖?答案是在線程進入ContentionList時,也即第一步操作前。線程在進入等待隊列時 首先進行自旋嘗試獲得鎖,如果不成功再進入等待隊列。這對那些已經在等待隊列中的線程來說,稍微顯得不公平。還有一個不公平的地方是自旋線程可能會搶佔了 Ready線程的鎖。自旋鎖由每個監視對象維護,每個監視對象一個。

3. JVM1.6偏向鎖

在JVM1.6中引入了偏向鎖,偏向鎖主要解決無競爭下的鎖性能問題,首先我們看下無競爭下鎖存在什麼問題:

現在幾乎所有的鎖都是可重入的,也即已經獲得鎖的線程可以多次鎖住/解鎖監視對象,按照之前的HotSpot設計,每次加鎖/解鎖都會涉及到一些CAS操 作(比如對等待隊列的CAS操作),CAS操作會延遲本地調用,因此偏向鎖的想法是一旦線程第一次獲得了監視對象,之後讓監視對象“偏向”這個 線程,之後的多次調用則可以避免CAS操作,說白了就是置個變量,如果發現爲true則無需再走各種加鎖/解鎖流程。但還有很多概念需要解釋、很多引入的 問題需要解決:

3.1 CASSMP架構

CAS爲什麼會引入本地延遲?這要從SMP(對稱多處理器)架構說起,下圖大概表明了SMP的結構:

JVM底層又是如何實現synchronized的

其意思是所有的CPU會共享一條系統總線(BUS),靠此總線連接主存。每個核都有自己的一級緩存,各核相對於BUS對稱分佈,因此這種結構稱爲“對稱多處理器”。

而CAS的全稱爲Compare-And-Swap,是一條CPU的原子指令,其作用是讓CPU比較後原子地更新某個位置的值,經過調查發現, 其實現方式是基於硬件平臺的彙編指令,就是說CAS是靠硬件實現的,JVM只是封裝了彙編調用,那些AtomicInteger類便是使用了這些封裝後的 接口。

Core1和Core2可能會同時把主存中某個位置的值Load到自己的L1 Cache中,當Core1在自己的L1 Cache中修改這個位置的值時,會通過總線,使Core2中L1 Cache對應的值“失效”,而Core2一旦發現自己L1 Cache中的值失效(稱爲Cache命中缺失)則會通過總線從內存中加載該地址最新的值,大家通過總線的來回通信稱爲“Cache一致性流量”,因爲總 線被設計爲固定的“通信能力”,如果Cache一致性流量過大,總線將成爲瓶頸。而當Core1和Core2中的值再次一致時,稱爲“Cache一致 性”,從這個層面來說,鎖設計的終極目標便是減少Cache一致性流量。

而CAS恰好會導致Cache一致性流量,如果有很多線程都共享同一個對象,當某個Core CAS成功時必然會引起總線風暴,這就是所謂的本地延遲,本質上偏向鎖就是爲了消除CAS,降低Cache一致性流量。

Cache一致性:

上面提到Cache一致性,其實是有協議支持的,現在通用的協議是MESI(最早由Intel開始支持),具體參考:http://en.wikipedia.org/wiki/MESI_protocol,以後會仔細講解這部分。

Cache一致性流量的例外情況:

其實也不是所有的CAS都會導致總線風暴,這跟Cache一致性協議有關,具體參考:http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot

NUMA(Non Uniform Memory Access Achitecture)架構:

與SMP對應還有非對稱多處理器架構,現在主要應用在一些高端處理器上,主要特點是沒有總線,沒有公用主存,每個Core有自己的內存,針對這種結構此處不做討論。

3.2 偏向解除

偏向鎖引入的一個重要問題是,在多爭用的場景下,如果另外一個線程爭用偏向對象,擁有者需要釋放偏向鎖,而釋放的過程會帶來一些性能開銷,但總體說來偏向鎖帶來的好處還是大於CAS代價的。

4. 總結

關於鎖,JVM中還引入了一些其他技術比如鎖膨脹等,這些與自旋鎖、偏向鎖相比影響不是很大,這裏就不做介紹。

通過上面的介紹可以看出,synchronized的底層實現主要依靠Lock-Free的隊列,基本思路是自旋後阻塞,競爭切換後繼續競爭鎖,稍微犧牲了公平性,但獲得了高吞吐量。

二、lock的實現

前文(深入JVM鎖機制-synchronized)分析了JVM中的synchronized實現,本文繼續分析JVM中的另一種鎖Lock的實現。與synchronized不同的是,Lock完全用Java寫成,在java這個層面是無關JVM實現的。 
在 java.util.concurrent.locks包中有很多Lock的實現類,常用的有ReentrantLock、 ReadWriteLock(實現類ReentrantReadWriteLock),其實現都依賴 java.util.concurrent.AbstractQueuedSynchronizer類,實現思路都大同小異,因此我們以 ReentrantLock作爲講解切入點。

1、ReentrantLock的調用過程
經過觀察ReentrantLock把所有Lock接口的操作都委派到一個Sync類上,該類繼承了AbstractQueuedSynchronizer: 
static abstract class Sync extends AbstractQueuedSynchronizer 
Sync又有兩個子類:
final static class NonfairSync extends Sync   view plain 
final static class FairSync extends Sync   
顯然是爲了支持公平鎖和非公平鎖而定義,默認情況下爲非公平鎖。


其實通過上面調用過程及AbstractQueuedSynchronizer的註釋可以發現,AbstractQueuedSynchronizer中抽象了絕大多數Lock的功能,而只把tryAcquire方法延遲到子類中實現。 tryAcquire方法的語義在於用具體子類判斷請求線程是否可以獲得鎖,無論成功與否AbstractQueuedSynchronizer都將處理後面的流程。

2、鎖實現

簡單說來,AbstractQueuedSynchronizer會把所有的請求線程構成一個CLH隊列,當一個線程執行完畢(lock.unlock())時會激活自己的後繼節點,但正在執行的線程並不在隊列中,而那些等待執行的線程全 部處於阻塞狀態,經過調查線程的顯式阻塞是通過調用LockSupport.park()完成,而LockSupport.park()則調用 sun.misc.Unsafe.park()本地方法,再進一步,HotSpot在Linux中中通過調用pthread_mutex_lock函數把 線程交給系統內核進行阻塞。


與synchronized相同的是,這也是一個虛擬隊列,不存在隊列實例,僅存在節點之間的前後關係。令人疑惑的是爲什麼採用CLH隊列呢?原生的CLH隊列是用於自旋鎖,但Doug Lea把其改造爲阻塞鎖。 
當有線程競爭鎖時,該線程會首先嚐試獲得鎖,這對於那些已經在隊列中排隊的線程來說顯得不公平,這也是非公平鎖的由來,與synchronized實現類似,這樣會極大提高吞吐量。 如果已經存在Running線程,則新的競爭線程會被追加到隊尾,具體是採用基於CAS的Lock-Free算法,因爲線程併發對Tail調用CAS可能會 導致其他線程CAS失敗,解決辦法是循環CAS直至成功。


AbstractQueuedSynchronizer通過構造一個基於阻塞的CLH隊列容納所有的阻塞線程,而對該隊列的操作均通過Lock-Free(CAS)操作,但對已經獲得鎖的線程而言,ReentrantLock實現了偏向鎖的功能。 
synchronized 的底層也是一個基於CAS操作的等待隊列,但JVM實現的更精細,把等待隊列分爲ContentionList和EntryList,目的是爲了降低線程的出列速度;當然也實現了偏向鎖,從數據結構來說二者設計沒有本質區別。但synchronized還實現了自旋鎖,並針對不同的系統和硬件體系進行了優 化,而Lock則完全依靠系統阻塞掛起等待線程。 
當然Lock比synchronized更適合在應用層擴展,可以繼承 AbstractQueuedSynchronizer定義各種實現,比如實現讀寫鎖(ReadWriteLock),公平或不公平鎖;同時,Lock對 應的Condition也比wait/notify要方便的多、靈活的多。

發佈了44 篇原創文章 · 獲贊 34 · 訪問量 13萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章