Handler基本使用(三) Handler机制的原理和源码讲解

         官方文档这样介绍 Handler 

         Each Handler instance is associated with a single thread and that thread's message queue. When you create a new Handler, it is bound to the thread / message queue of the thread that is creating it -- from that point on, it will deliver messages and runnables to that message queue and execute them as they come out of the message queue.

        意思是每个handler实例都关联一个线程以及这个线程的message queue,一旦handler创建,它就和线程绑定了。handler的作用是传递信息和runnable至message queue ,并且在信息和runnable从消息队列返回时处理他们。
        根据上面的描述,我绘制了一个比较简单的handler工作原理图

        假设我们现在有两个线程,线程B想要通过handler发消息给线程A,具体是怎么一个过程呢。
        很简单,线程A拥有自己的
        Handler   :1、负责发送消息和runnable到消息队列  2、处理从消息队列返回的消息和runnable
        消息队列:负责存放待处理的消息。
        Looper   :负责循环遍历消息队列,根据先进先出原则取出待处理消息发送给handler


        当线程B想要发送消息到线程A处理时,它只需要获取线程A中的handler实例,调用handler的几个基础方法发送消息即可,这些消息会被线程A的handler实例传递到线程A的消息队列等待处理,当线程A的looper循环遍历到他们时,就会被传递到线程A的handler实例进行处理,整个过程就完成了。
         

          那么我们可以看一看源码,是不是这样一个过程呢
          从handler的构造函数入手 
 

public Handler() {//无参构造函数调用了带两个参数的构造函数
        this(null, false);
    }
public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }
         上面这个方法非常重要!它做了啥事情呢

       1、检查了创建handler的类是不是内部类,如果是内部类是不是静态的,不然则做出提示

   The following Handler class should be static or leaks might occur 

   这个提示是不是非常眼熟,嘻嘻。

   为什么要做这个检查呢,我之前发表过一篇文章进行讨论,有兴趣可以参考 点击打开链接

          2、 mLooper = Looper.myLooper();  获取了一个looper对象,如果该对象为空,则抛出异常

          Can't create handler inside thread that has not called Looper.prepare()

         嘻嘻,也是很眼熟吧,当我们在子线程创建handler时,这个异常一言不合就抛出了。那么我们可以看看这个Looper.prepare()到底干了啥吧

  public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }
        它做的事情很简单,检查当前线程有没有looper对象,有则抛出异常提示线程已经拥有自己的looper对象。没有就为当前线程创建一个looper对象

        回到handler的构造函数,在获取了自己的looper对象以后,它又做了什么

        3、mQueue = mLooper.mQueue; 获取message queue对象

        到这里我们可以看到,Handler的构造函数做了两件重要的事情,一是创建looper对象,二是获取消息队列


       接下来,我们看一看Handler是怎么传递消息的,依然从源码入手 

 public final boolean sendMessage(Message msg)
    {
        return sendMessageDelayed(msg, 0);
    }
  public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }
 public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }
 private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }
           再多的这里就不贴了,因为无论从handler哪一个发送消息的方法入手,最终调用的都是queue.enqueueMessage(msg, uptimeMillis)。我们主要看一看这个enqueueMessage(msg, uptimeMillis)方法是干了啥
 boolean enqueueMessage(Message msg, long when) {
        if (msg.isInUse()) {
            throw new AndroidRuntimeException(msg + " This message is already in use.");
        }
        if (msg.target == null) {
            throw new AndroidRuntimeException("Message must have a target.");
        }

        synchronized (this) {
            if (mQuitting) {
                RuntimeException e = new RuntimeException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w("MessageQueue", e.getMessage(), e);
                return false;
            }

            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

         别看这个方法里又是判断又是循环的,实际上它的任务很简单,就是把刚刚发送过来的message插入到消息队列中合适的位置,为了便于理解,还是稍微讲几句它的核心代码  

            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } 

            先解释一下这里的mMessage,它是处于消息队列头部的消息,if判断语句说的是,如果这个消息队列头为空,或者是新消息的延迟为0,或者是新消息的延迟小于队列头消息的延迟时,直接把新消息置于队列头部。不然的话

        else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }
          需要根据新消息的延迟将它插入至队列中合适的位置,这里的for循环做的就是遍历消息队列,依次对比新消息和每一条消息的延迟,直至找到比新消息延迟大的第一条消息。

        到这里,handler的构造函数和消息传递,我们都看到了,结合上图会不会更清晰一点呢。接下来,我们就看looper是如何循环遍历消息队列的吧

 /**
     * Run the message queue in this thread. Be sure to call
     * {@link #quit()} to end the loop.
     */
    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            msg.target.dispatchMessage(msg);

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycle();
        }
    }
        我们依旧只看最关键的代码

 public static void loop() {
        final Looper me = myLooper();
        ……
        final MessageQueue queue = me.mQueue;
        ……
        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }
            ……
            msg.target.dispatchMessage(msg);
            ……
            msg.recycle();
        }
    }
         这个方法先拿到消息队列,然后开启一个for循环,从消息队列中依次取出每一条消息,然后调用msg.target.dispatchMessage(msg)进行处理

         这个msg.target是啥呢,这里必须说一下,其实这个target就是handler对象

         如果我们发送消息时采用的是handler的一系列方法( 

                                                                                       sendMessage(Message msg)

                                                                                       sendEmptyMessage(int what)

                                                                                       sendEmptyMessageDelayed(int what, long delayMillis)

                                                                                       ……

                                                                                      )
       他们最终都会调用到一个方法
  

 private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }
        在这里handler将自己赋值给message对象的target


        如果我们发送消息时采用的是Message的一系列方法

                                                                                       obtain(Handler h)  +sendToTarget()

                                                                                       obtain(Handler h, Runnable callback) +sendToTarget()


         
每一个obtain方法中,都会将handler赋值给message对象的target,这里就不贴出代码了。

   所以msg.target.dispatchMessage(msg),其实就是message对象调用它所绑定的handler的方法,处理本身了。我们最后看看这个dispatchMessage(msg)方法

 /**
     * Handle system messages here.
     */
    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }
   这个方法做的事情很简单,判断回调有没有被实现,如果回调被实现则调用相应的方法,不然就调用handleMessage方法。

   到这里handler的工作原理和源码讲解就全部结束了,小女子火候尚浅,若有不对的地方,还请各位侠士指教了。O(∩_∩)O~~










發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章