在java虚拟机中对象的创建过程

虚拟机遇到一条new指令时,首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已经被加载、解析和初始化过。如果没有,那么必须先执行相应的类加载过程。

在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需内存的大小在类加载完成后便可完全确定,为对象分配空间的任务等同于把一块确定大小的内存从Java堆中划分出来。

指针碰撞:

假设Java堆中的内存是绝对规整的,所有用过的内存都放到一边,空闲的内存放到另一边,中间放着一个指针作为分界点的指示器,那所分配内存就仅仅是把那个指针向空闲空间那边挪动一段与对象大小相等的距离,这种分配成为指针碰撞。

空闲列表

如果Java堆中的内存并不是规整的,已使用的内存和空闲的内存相互交错,那就没有办法简单地进行指针碰撞了,虚拟机就必须维护一个列表,记录上哪些内存块是可用的,在分配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的记录,这种分配方式成为空闲列表。

选择那种分配方式由Java堆是否规整来决定,而Java堆是否规整又由所采用的垃圾收集器是否带有压缩整理功能决定。
因此在使用Serial、ParNew等带Compact过程的收集器时,系统采用的分配算法是指针碰撞。
而是用CMS这种教育Mark-Sweep算法的收集器时,通常采用空闲列表。

除如何划分可用空间之外,还有另外一个需要考虑的问题是对象创建在虚拟机中是非常频繁的行为,即使是仅仅修改了一个指针所指向的位置,在并发情况下也并不是线程安全的,可能出现在正在给对象A分配内存,指针还没来得及修改,对象B又同时使用了原来的指针来分配内存的情况。

解决这个问题有两种方案:一种是对分配内存空间的动作进行同步处理–实际上虚拟机采用CAS配上失败重试的方式保证更新操作的原子性;
另一种是把内存分配的动作按照线程划分在不同的空间之中进行,即每个线程在Java堆中预先分配一小块内存,成为本地线程分配缓冲。哪个线程需要分配内存,就在哪个线程的TLAB上分配,只有TLAB用完并分配新的TLAB时,才需要同步锁定。

虚拟机分配完成后,虚拟机需要将分配到的内存空间都初始化为零值。虚拟机还需要对对象进行必要的设置,例如这个对象是哪个类的实例,如何才能找到类的元数据信息、对象的哈希码、对象的GC分代年龄等信息。这些信息存放在对象的对象头中。

HotSpot虚拟机的对象头包括两部分信息,第一部分用于存储对象自身的运行时数据,如哈希码、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等。
对象头的另外一部分是类型指针,即对象指向他的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例。并不是所有的虚拟机实现都必须在对象数据上保留类型指针,换句话说,查找对象的元数据信息并不一定要经过对象本身。

如果对象是一个Java数组,那在对象头中还必须有一块用于记录数组长度的数据,因为虚拟机可以通过普通Java对象的元数据信息确定Java对象的大小,但是从数组的元数据中却无法确定数组的大小。

实例数据是对象真正存储的有效信息。这部分的存储顺序会受到虚拟机分配策略参数和字段在Java源码中定义的顺序的影响。 相同宽度的字段总是被分配到一起。

对其填充,并不是必然存在的,仅仅起着占位符的作用。

对象的访问定位:

Java程序需要通过栈上的reference数据来操作堆上的具体对象。
目前对象访问的方式有两种:使用句柄和直接指针

如果使用句柄访问:Java堆中将会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址。句柄中包含了对象实例数据与类型数据各自的具体的地址信息。

如果使用直接指针访问,那么Java堆对象的布局中就必须考虑如何放置访问类型数据的相关信息。而reference中存储的直接就是对象地址。

使用句柄访问的好处就是reference中存储的是稳定的句柄地址,在对象被移动时只会改变句柄中的实例数据指针,而reference本身不需要修改。

使用直接指针的访问方式就是速度更快,因为他节省了一次指针定位的时间开销。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章