Linux性能優化實戰(1)-到底應該怎麼理解“平均負載”

執行 top 或者 uptime 命令,來了解系統的負載情況。比如像下面這樣,我在命令行裏輸入了 uptime 命令,系統也隨即給出 了結果。

`$uptime
 02:34:03 up 2 days, 20:14,  1 user,  load average: 0.63, 0.83, 0.88
`

下面幾列分別是當前時間、系統運行時間以及正在登錄用戶數。

`
02:34:03              // 當前時間
up 2 days, 20:14      // 系統運行時間
1 user                // 正在登錄用戶數
`

而最後三個數字呢,依次則是過去 1 分鐘、5 分鐘、15 分鐘的平均負載(Load Average)。

可以通過執行 man uptime 命令,來了解平均負載的詳細解釋。

簡單來說,平均負載是指單位時間內,系統處於可運行狀態 和不可中斷狀態的平均進程數,也就是平均活躍進程數 ,它和 CPU 使用率並沒有直接關係。

可運行狀態的進程,是指正在使用 CPU 或者正在等待 CPU 的進程,也就是我們常用 ps 命令看到的,處於 R 狀態(Running 或 Runnable)的進程。

不可中斷狀態的進程則是正處於內核態關鍵流程中的進程,並且這些流程是不可打斷的,比如最常見的是等待硬件設備的 I/O 響應,也就是我們在 ps 命令中看到的 D 狀態(Uninterruptible Sleep,也稱爲 Disk Sleep)的進程。

比如,當一個進程向磁盤讀寫數據時,爲了保證數據的一致性,在得到磁盤迴復前,它是不能被其他進程或者中斷打斷的,這個時候的進程就處於不可中斷狀態。如果此時的進程被打斷了,就容易出現磁盤數據與進程數據不一致的問題。

所以,不可中斷狀態實際上是系統對進程和硬件設備的一種保護機制

因此,你可以簡單理解爲,平均負載其實就是平均活躍進程數。平均活躍進程數,直觀上的理解就是單位時間內的活躍進程數,但它實際上是活躍進程數的指數衰減平均值。這個“指數衰減平均”的詳細含義你不用計較,這只是系統的一種更快速的計算方式,你把它直接當成活躍進程數的平均值也沒問題。

既然平均的是活躍進程數,那麼最理想的,就是每個 CPU 上都剛好運行着一個進程,這樣每個 CPU 都得到了充分利用。比如當平均負載爲 2 時,意味着什麼呢?

在只有 2 個 CPU 的系統上,意味着所有的 CPU 都剛好被完全佔用。
在 4 個 CPU 的系統上,意味着 CPU 有 50% 的空閒。
而在只有 1 個 CPU 的系統中,則意味着有一半的進程競爭不到 CPU

平均負載爲多少時合理

平均負載最理想的情況是等於 CPU 個數。所以在評判平均負載時,首先你要知道系統有幾個 CPU ,這可以通過 top 命令或者從文件 /proc/cpuinfo 中讀取,比如:

`# 關於 grep 和 wc 的用法請查詢它們的手冊或者網絡搜索
 $ grep 'model name' /proc/cpuinfo | wc -l
 2
`

有了 CPU 個數,我們就可以判斷出,當平均負載比 CPU 個數還大的時候,系統已經出現了過載。

平均負載有三個數值,到底該參考哪一個呢?

實際上,都要看。三個不同時間間隔的平均值,其實給我們提供了,分析系統負載趨勢的數據來源,讓我們能更全面、更立體地理解目前的負載狀況。

1.如果 1 分鐘、5 分鐘、15 分鐘的三個值基本相同,或者相差不大,那就說明系統負載很平穩。
2.但如果 1 分鐘的值遠小於 15 分鐘的值,就說明系統最近 1 分鐘的負載在減少,而過去 15 分鐘內卻有很大的負載。
3.反過來,如果 1 分鐘的值遠大於 15 分鐘的值,就說明最近 1 分鐘的負載在增加,這種增加有可能只是臨時性的,也有可能還會持續增加下去,所以就需要持續觀察。一旦 1 分鐘的平均負載接近或超過了 CPU 的個數,就意味着系統正在發生過載的問題,這時就得分析調查是哪裏導致的問題,並要想辦法優化了。

假設我們在一個單 CPU 系統上看到平均負載爲 1.73,0.60,7.98,那麼說明在過去 1 分鐘內,系統有 73% 的超載,而在 15 分鐘內,有 698% 的超載,從整體趨勢來看,系統的負載在降低。

**當平均負載高於 CPU 數量 70% 的時候 ,你就應該分析排查負載高的問題了。**一旦負載過高,就可能導致進程響應變慢,進而影響服務的正常功能。

但 70% 這個數字並不是絕對的,最推薦的方法,還是把系統的平均負載監控起來,然後根據更多的歷史數據,判斷負載的變化趨勢。當發現負載有明顯升高趨勢時,比如說負載翻倍了,你再去做分析和調查。

平均負載與 CPU 使用率

平均負載是指單位時間內,處於可運行狀態和不可中斷狀態的進程數。所以,它不僅包括了

而 CPU 使用率,是單位時間內 CPU 繁忙情況的統計,跟平均負載並不一定完全對應。比如:

而 CPU 使用率,是單位時間內 CPU 繁忙情況的統計,跟平均負載並不一定完全對應。比如:
I/O 密集型進程,等待 I/O 也會導致平均負載升高,但 CPU 使用率不一定很高;
大量等待 CPU 的進程調度也會導致平均負載升高,此時的 CPU 使用率也會比較高。

平均負載案例分析

我們以三個示例分別來看這三種情況,並用 iostat、mpstat、pidstat 等工具,找出平均負載升高的根源。

你的準備

同樣適用於其他 Linux 系統。我使用的案例環境如下所示。

機器配置:2 CPU,8GB 內存。
預先安裝 stress 和 sysstat 包,如 apt install stress sysstat。

而 sysstat 包含了常用的 Linux 性能工具,用來監控和分析系統的性能。我們的案例會用到這個包的兩個命令 mpstat 和 pidstat。

mpstat 是一個常用的多核 CPU 性能分析工具,用來實時查看每個 CPU 的性能指標,以及所有 CPU 的平均指標。
pidstat 是一個常用的進程性能分析工具,用來實時查看進程的 CPU、內存、I/O 以及上下文切換等性能指標。

每個場景都需要你開三個終端,登錄到同一臺 Linux 機器中。

面的所有命令,我們都是默認以 root 用戶運行。所以,如果你是用普通用戶登陸的系統,一定要先運行 sudo su root 命令切換到 root 用戶。

如果上面的要求都已經完成了,你可以先用 uptime 命令,看一下測試前的平均負載情況:

`$uptame
...,  load average: 0.11, 0.15, 0.09
`

場景一:CPU 密集型進程

首先,我們在第一個終端運行 stress 命令,模擬一個 CPU 使用率 100% 的場景:

`$ stress --cpu 1 --timeout 600

`

接着,在第二個終端運行 uptime 查看平均負載的變化情況:

` 
# -d 參數表示高亮顯示變化的區域
$ watch -d uptime
...,  load average: 1.00, 0.75, 0.39

`

最後,在第三個終端運行 mpstat 查看 CPU 使用率的變化情況:

`# -P ALL 表示監控所有 CPU,後面數字 5 表示間隔 5 秒後輸出一組數據
$ mpstat -P ALL 5
Linux 4.15.0 (ubuntu) 09/22/18 _x86_64_ (2 CPU)
13:30:06     CPU    %usr   %nice    %sys %iowait    %irq   %soft  %steal  %guest  %gnice   %idle
13:30:11     all   50.05    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00   49.95
13:30:11       0    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00  100.00
13:30:11       1  100.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00
`

從終端二中可以看到,1 分鐘的平均負載會慢慢增加到 1.00,而從終端三中還可以看到,正好有一個 CPU 的使用率爲 100%,但它的 iowait 只有 0。這說明,平均負載的升高正是由於 CPU 使用率爲 100% 。

到底是哪個進程導致了 CPU 使用率爲 100% 呢?你可以使用 pidstat 來查詢:

`# 間隔 5 秒後輸出一組數據
$ pidstat -u 5 1
13:37:07      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
13:37:12        0      2962  100.00    0.00    0.00    0.00  100.00     1  stress
`

從這裏可以明顯看到,stress 進程的 CPU 使用率爲 100%。

場景二:I/O 密集型進程
首先還是運行 stress 命令,但這次模擬 I/O 壓力,即不停地執行 sync:

`$stress -i 1 --timeout 600
`

還是在第二個終端運行 uptime 查看平均負載的變化情況:

`$watch -d uptime
...,  load average: 1.06, 0.58, 0.37
`

然後,第三個終端運行 mpstat 查看 CPU 使用率的變化情況:

`# 顯示所有 CPU 的指標,並在間隔 5 秒輸出一組數據
$ mpstat -P ALL 5 1
Linux 4.15.0 (ubuntu)     09/22/18     _x86_64_    (2 CPU)
13:41:28     CPU    %usr   %nice    %sys %iowait    %irq   %soft  %steal  %guest  %gnice   %idle
13:41:33     all    0.21    0.00   12.07   32.67    0.00    0.21    0.00    0.00    0.00   54.84
13:41:33       0    0.43    0.00   23.87   67.53    0.00    0.43    0.00    0.00    0.00    7.74
13:41:33       1    0.00    0.00    0.81    0.20    0.00    0.00    0.00    0.00    0.00   98.99
`

1 分鐘的平均負載會慢慢增加到 1.06,其中一個 CPU 的系統 CPU 使用率升高到了 23.87,而 iowait 高達 67.53%。這說明,平均負載的升高是由於 iowait 的升高。

那麼到底是哪個進程,導致 iowait 這麼高呢?我們還是用 pidstat 來查詢:

`# 間隔 5 秒後輸出一組數據,-u 表示 CPU 指標
$ pidstat -u 5 1
Linux 4.15.0 (ubuntu)     09/22/18     _x86_64_    (2 CPU)
13:42:08      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
13:42:13        0       104    0.00    3.39    0.00    0.00    3.39     1  kworker/1:1H
13:42:13        0       109    0.00    0.40    0.00    0.00    0.40     0  kworker/0:1H
13:42:13        0      2997    2.00   35.53    0.00    3.99   37.52     1  stress
13:42:13        0      3057    0.00    0.40    0.00    0.00    0.40     0  pidstat
`

場景三:大量進程的場景
當系統中運行進程超出 CPU 運行能力時,就會出現等待 CPU 的進程。

比如,我們還是使用 stress,但這次模擬的是 8 個進程:

`$stress -c 8 --timeout 600
`

由於系統只有 2 個 CPU,明顯比 8 個進程要少得多,因而,系統的 CPU 處於嚴重過載狀態,平均負載高達 7.97:

`$uptime
...,  load average: 7.97, 5.93, 3.02
`

接着再運行 pidstat 來看一下進程的情況:

`# 間隔 5 秒後輸出一組數據
$ pidstat -u 5 1
14:23:25      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
14:23:30        0      3190   25.00    0.00    0.00   74.80   25.00     0  stress
14:23:30        0      3191   25.00    0.00    0.00   75.20   25.00     0  stress
14:23:30        0      3192   25.00    0.00    0.00   74.80   25.00     1  stress
14:23:30        0      3193   25.00    0.00    0.00   75.00   25.00     1  stress
14:23:30        0      3194   24.80    0.00    0.00   74.60   24.80     0  stress
14:23:30        0      3195   24.80    0.00    0.00   75.00   24.80     0  stress
14:23:30        0      3196   24.80    0.00    0.00   74.60   24.80     1  stress
14:23:30        0      3197   24.80    0.00    0.00   74.80   24.80     1  stress
14:23:30        0      3200    0.00    0.20    0.00    0.20    0.20     0  pidstat
`

8 個進程在爭搶 2 個 CPU,每個進程等待 CPU 的時間(也就是代碼塊中的 %wait 列)高達 75%。這些超出 CPU 計算能力的進程,最終導致 CPU 過載。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章