topcoder SRM495 div1 level2

Problem Statement

  There are N boxes numbered 0 through N-1. Every box except for one contains carrots, but Rabbit Hanako does not know which box is the empty one. Each box has the same probability of being empty.



Hanako wants to find the empty box without opening it. Fortunately, she has some clues. Some of the boxes contain information about the content of other boxes, and she knows which boxes contain such information. You are given a String[] information, where the j-th character of the i-th element is 'Y' if opening the i-th box will reveal whether or not the j-th box contains carrots, or 'N' if the i-th box contains no such information.



Return the probability that she can find the empty box without opening it, assuming she behaves optimally.
 

Definition

 
Class: CarrotBoxes
Method: theProbability
Parameters: String[]
Returns: double
Method signature: double theProbability(String[] information)
(be sure your method is public)
 
 
 

Constraints

- information will contain between 1 and 50 elements, inclusive.
- Each element of information will contain exactly N characters, where N is the number of elements of information.
- The i-th character of the i-th element of information will be 'Y'.
- Each character in information will be 'Y' or 'N'.
 

Examples

0)  
 
{"YYYYY",
 "NYNNN",
 "NNYNN",
 "NNNYN",
 "NNNNY"}
Returns: 0.8
The optimal strategy is opening box 0 first. If box 0 contains carrots, she can find the empty box without opening it because box 0 contains information about all boxes. It happens with probability 0.8.
1)  
 
{"YNNNN",
 "NYNNN",
 "NNYNN",
 "NNNYN",
 "NNNNY"}
Returns: 0.2
No box contains information about other boxes, so she can find the empty box without opening it only when she opens all other boxes. It happens with probability 0.2.
2)  
 
{"Y"}
Returns: 1.0
Since there is only one box, she knows that the only box is empty.
3)  
 
{"YNNNN",
 "YYNNN",
 "YNYNN",
 "NNNYY",
 "NNNYY"}
Returns: 0.6
4)  
 
{"YYYNNNYN",
 "NYNNNNYN",
 "NNYNNNNN",
 "NYNYNNNN",
 "YNNNYNNY",
 "NNYNNYNN",
 "NNNNYNYN",
 "NNYNNNNY"}
Returns: 0.875
5)  
 
{"YNNNNNNNNYNNNNNNNNNN",
 "NYNNNNNNNNNNNNNNNNNN",
 "NNYNNNNNNNYNNNNNYNNN",
 "NNNYNYNNNNNNNNYNNNNN",
 "NNNNYNNNNNNNNNYNNNNY",
 "NNNNNYNNNNNNNNNNNNNY",
 "NNNNYNYNYNNNNNNNNNNN",
 "NNNNNNNYNNNYYNNNNNNN",
 "NNNNNNNNYNNNNNNNNNNN",
 "YNNNNNNNNYNNNNNYNNNN",
 "NNNNNNNNNNYNNNNNNNNN",
 "NYNNNNNNNNNYNNNNNNNN",
 "NNNNNNNYNNNNYNNNNNNN",
 "NNNNNNNNNNNNNYNNNYNN",
 "NNNNNNNNNNNYNNYNNNYN",
 "NYNNNNNNNNNNNNNYNNNN",
 "NNYNNNNNNNNNNNNNYNNN",
 "NNNNNNNNNNNNNYNYNYNN",
 "NNNNNNNNYNYNNNNNNNYY",
 "NNNYNNNNNNNNNNNNNNNY"}
Returns: 0.75


【題解】

顯然,我們可以用一個圖來描述問題。G(V,E) V是N個點的集合,而E則是關係。

其實這是一個類似覆蓋的問題。由於是有向圖,所以要縮點

必然是要選入度爲0的點,所以算法由此而生。

但要注意一點:存在一種情況,可以不打開最後一個箱子,因爲那時已經可以得出那個箱子是空的。

【代碼】

public class CarrotBoxes
{
	public double theProbability(String[] information)
	{
	    int n = information.length;
	    // Floyd-Warshall to get an array connected[i][j]
	    // connected[i][j] is true if there is a directed path
	    // between i and j.
		boolean[][] connected = new boolean[n][n];
		for (int i=0; i<n; i++) {
			for (int j=0; j<n; j++) {
			    connected[i][j] = (information[i].charAt(j)=='Y');
			}
		}
		for (int k=0; k<n; k++) {
			for (int i=0; i<n; i++) {
				for (int j=0; j<n; j++) {
				    connected[i][j] = connected[i][j]
				                     || (connected[i][k] && connected[k][j] );
				}
			}

		}
		
		// Find the top-most components
		int[] top = new int[n];
		int   tn  = 0;
		boolean[] tried = new boolean[n];
		
		for (int i=0; i<n; i++) {
		    if(! tried[i]) {
		        //mark all the boxes in the same component as tried
		        for (int j=0; j<n; j++) {
		            if ( connected[i][j] && connected[j][i] ) {
		                tried[j] = true;
		            }
		        }
		        // count the number of in-going connections to the
		        // box.
		        int c = 0;
		        for (int j=0; j<n; j++) {
		            // interested only in connections from other components
		            if ( connected[j][i]  && ! connected[i][j] ) {
		                c ++;
		            }
		        }
		        if ( c== 0) {
		            // It is a "top-most" component, add to our array
		            top[tn++] = i;
		        }
		    }
		}
		
		// Try to pick which box to open last.
		for (int lastid = 0; lastid < tn; lastid++) {
		    int last = top[lastid];
		    boolean[] opened = new boolean[n];
		    // Assume we open a box from each of the
		    // other top components, then mark all the
		    // boxes reachable from those components 
		    // as "opened"
		    for (int j=0; j<tn; j++) {
		        if ( j != lastid ) {
		            for (int k=0; k<n; k++) {
		                if (connected[ top[j] ][k]) {
		                    opened[k] = true;
		                }
		            }
		        }
		    }
		    
		    // If only one box is left open, then we can use
		    // this improvement.
		    boolean ok = true;
		    for (int j=0; j<n; j++) {
		        if ( (j!=last) && ! opened[j] ) {
		            ok = false;
		        }
		    }
		    if ( ok ) {
        		return ( (n-(tn-1) ) / (double)(n));
		    }
		}
		
		// Since there is no improvement with last method, 
		// we will have to open one box per each of the tn top components:
		return ( (n-tn) / (double)(n));
	}
	
}

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章