U-boot分析与移植(3)----U-boot stage2分析 .

 .

一来到void start_armboot (void)函数,马上出现两个很重要的数据结构gd_t和bd_t

1、gd_t : global data数据结构定义,位于文件 include/asm-arm/global_data.h。其成员主要是一些全局的系统初始化参数。

typedef	struct	global_data {
	bd_t		*bd;      // struct board_info指针,保存板子信息
	unsigned long	flags;     // 指示标志,如设备已经初始化标志等
	unsigned long	baudrate;
	unsigned long	have_console;	/* serial_init() was called */
	unsigned long	reloc_off;	/* Relocation Offset */
	unsigned long	env_addr;	/* Address  of Environment struct 环境参数地址*/
	unsigned long	env_valid;	/* Checksum of Environment valid? */
	unsigned long	fb_base;	/* base address of frame buffer */
#ifdef CONFIG_VFD
	unsigned char	vfd_type;	/* display type */
#endif
#if 0
	unsigned long	cpu_clk;	/* CPU clock in Hz!		*/
	unsigned long	bus_clk;
	unsigned long	ram_size;	/* RAM size */
	unsigned long	reset_status;	/* reset status register at boot */
#endif
	void		**jt;		/* jump table */
} gd_t;

2.、bd_t :board info数据结构定义,位于文件 include/asm-arm/u-boot.h。保存板子参数。

typedef struct bd_info {
    int			bi_baudrate;	/* serial console baudrate */
    unsigned long	bi_ip_addr;	/* IP Address */
    unsigned char	bi_enetaddr[6]; /* Ethernet adress */
    struct environment_s	       *bi_env;
    ulong	        bi_arch_number;	/* unique id for this board  板子ID*/
    ulong	        bi_boot_params;	/* where this board expects params */
    struct				/* RAM configuration */
    {
	ulong start;
	ulong size;
    } 			bi_dram[CONFIG_NR_DRAM_BANKS];
#ifdef CONFIG_HAS_ETH1
    /* second onboard ethernet port */
    unsigned char   bi_enet1addr[6];
#endif
} bd_t;


分配一个存储全局数据的区域,地 址给指针 gd

gd = (gd_t*)(_armboot_start - CFG_MALLOC_LEN - sizeof(gd_t));


清0并分配空间

memset ((void*)gd, 0, sizeof (gd_t));  


在gd前面的位置给 gd->bd赋值地址

 gd->bd = (bd_t*)((char*)gd - sizeof(bd_t));


清0并分配空间

 memset (gd->bd, 0, sizeof (bd_t));


执行一系列初始化函数

for (init_fnc_ptr = init_sequence; *init_fnc_ptr; ++init_fnc_ptr) {
  if ((*init_fnc_ptr)() != 0) {
   hang ();
  }
 }


假如函数指针指向的函数返回值不为0,那么在hang()里就会死循环,初始化失败

void hang (void)
{
 puts ("### ERROR ### Please RESET the board ###\n");
 for (;;);
}


函数列表如下:

每个初始化函数正常情况下返回值是0

init_fnc_t *init_sequence[] = {
 cpu_init,  /* 初始化irq/fiq模式的栈*/
 board_init, /* 设置系统时钟*/
 interrupt_init, /*初始化定时器*/
 env_init,  /* 检查flash上的环境参数是否有效*/
 init_baudrate, /* 初始化波特率*/
 serial_init, /* 初始化串口*/
 console_init_f, /*初始化串口控制台*/
 display_banner, /* say that we are here */

接着进行一些NOR FLASH,LCD,串口,控制台,sd卡,网卡等初始化,不一一列举了。

终于来到重要的时刻了 - -#

进入一个死循环

 for (;;)
 {
  main_loop ();
 }


继续跟踪

发现在bootdelay时间内按下键进入命令行,用run_command来解析命令

#if defined(CONFIG_BOOTDELAY) && (CONFIG_BOOTDELAY >= 0)
	s = getenv ("bootdelay");
	bootdelay = s ? (int)simple_strtol(s, NULL, 10) : CONFIG_BOOTDELAY;

	debug ("### main_loop entered: bootdelay=%d\n\n", bootdelay);

如果CONFIG_BOOTDELAY已经定义,用s得到环境变量bootdelay,然后倒数启动内核

#ifdef CONFIG_BOOTCOUNT_LIMIT
	if (bootlimit && (bootcount > bootlimit)) {
		printf ("Warning: Bootlimit (%u) exceeded. Using altbootcmd.\n",
		        (unsigned)bootlimit);
		s = getenv ("altbootcmd");
	}
	else
#endif /* CONFIG_BOOTCOUNT_LIMIT */
		s = getenv ("bootcmd");


CONFIG_BOOTCOUNT_LIMIT是设置u-boot启动次数的限制

最后s = getenv ("bootcmd");获得启动参数

		run_command (s, 0);

启动命令解析
在run_command 函数里最终执行命令

  /* OK - call function to do the command */
  if ((cmdtp->cmd) (cmdtp, flag, argc, argv) != 0) {
   rc = -1;
  }

这是一个命令结构体,原型如下:

struct cmd_tbl_s {
	char		*name;		/* Command Name			*/
	int		maxargs;	         /* 最大的参数个数	*/
	int		repeatable;	/* 命令可否重复	*/
	int		(*cmd)(struct cmd_tbl_s *, int, int, char *[]);/*对应的函数指针*/
	char		*usage;		/* Usage message	(short)	*/

正常情况下就会执行U_BOOT_CMD命令,U_BOOT_CMD宏定义一个命令,命令宏原型如下:

/*命令宏U_BOOT_CMD*/
#define U_BOOT_CMD(name,maxargs,rep,cmd,usage,help) \
cmd_tbl_t    __u_boot_cmd_##name     Struct_Section = {#name, maxargs, rep, cmd, usage, help}

假若上面是传入的是一个bootm命令启动内核,将会调用相应的

 U_BOOT_CMD里的do_bootm函数
U_BOOT_CMD(
 	bootm,	CFG_MAXARGS,	1,	do_bootm,
 	"bootm   - boot application image from memory\n",
 	"[addr [arg ...]]\n    - boot application image stored in memory\n"
 	"\tpassing arguments 'arg ...'; when booting a Linux kernel,\n"
 	"\t'arg' can be the address of an initrd image\n"

在do_bootm函数里,将用switch case检查内核zImage类型,解压方式,操作系统等,因为zImage是自解压的,不用解压

switch (hdr->ih_os) {
	default:			/* handled by (original) Linux case */
	case IH_OS_LINUX:

	    do_bootm_linux  (cmdtp, flag, argc, argv,
			     addr, len_ptr, verify);
	    break;	

最后,将进入Armlinux.c的do_bootm_linux函数启动Linux内核

U_Boot也是通过标记列表向内核传递参数的

#ifdef CONFIG_CMDLINE_TAG
	char *commandline = getenv ("bootargs");
#endif

CONFIG_CMDLINE_TAG在smdk2410.h里已经定义了

theKernel指向内核 存放的地址,(对于ARM架构的CPU,通常是0x30008000),

/*声明内核的入口函数指针*/

void (*theKernel)(int zero, int arch, uint params);

 

/*把内核入口地址赋值给theKernel,hdr是image_header_t结构体,指向uImage头部 ,ih_ep是内核的入口点(Entry Point)*/

theKernel = (void (*)(int, int, uint))ntohl(hdr->ih_ep); 

/*最后是对内核入口函数的调用,bd->bi_arch_number是这个板子机器类型ID, bd->bi_boot_params是传给内核的参数,从标记列表地址开始*/

theKernel (0, bd->bi_arch_number, bd->bi_boot_params);
引导Linux内核启动的必须要满足的几个条件:
* CPU register settings //这里也就是我们的theKernel中的作用
          o r0 = 0.
          o r1 = machine type number.
          o r2 = physical address of tagged list in system RAM.
    * CPU mode
          o All forms of interrupts must be disabled (IRQs and FIQs.)
          o The CPU must be in SVC mode. (A special exception exists for Angel.)
    * Caches, MMUs
          o The MMU must be off.
          o Instruction cache may be on or off.
          o Data cache must be off and must not contain any stale data.
    * Devices
          o DMA to/from devices should be quiesced.
    * The boot loader is expected to call the kernel image by jumping directly to the first instruction of the kernel image.
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章