principal component analysis

  • Derivation (method of Lagrangian multiplier)

Derivation

First step:

  • Find αkx\bm \alpha'_k \bm x that maximises var(αkx)\text{var}(\bm \alpha'_k \bm x)
  • Choose normalisation constraint αkαk=1\bm \alpha'_k \bm \alpha_k = 1
    maxαkΣαkλ(αkαk1)\max \bm \alpha'_k \bm \Sigma \bm \alpha_k - \lambda (\bm \alpha'_k \bm \alpha_k - 1)

Σαk=λαk (eigenvector equation)\hspace{5em} \bm \Sigma \bm \alpha_k = \lambda \bm \alpha_k \ (\text{eigenvector equation})

Since var(αkx)=λαkαk=λ\text{var}(\bm \alpha'_k \bm x) = \lambda \bm \alpha_k' \bm \alpha_k=\lambda, its maximum takes place when λ\lambda is the largest eigenvalue of Σ\bm \Sigma and hence the first principal component is set as the largest eigenvector e1\bm e_1.

Second step:

  • Additional constraint: cov(α1x,α2x)=α2Σα1=λ1α2α1=0\text{cov}(\bm \alpha'_1 \bm x, \bm \alpha'_2 \bm x) = \bm \alpha'_2 \bm \Sigma \bm \alpha_1 = \lambda_1 \bm \alpha'_2 \bm \alpha_1=0

maxα2Σα2λ2(α2α21)ϕα2α1α2:Σα2λ2α2ϕα1=0α1Σα2λ2α1α2ϕα1α1=000ϕα1α1=0ϕ=0Σα2λ2α2=0\begin{aligned} \max \bm \alpha'_2 &\bm \Sigma \bm \alpha_2 - \lambda_2 (\bm \alpha'_2 \bm \alpha_2 - 1) - \phi \bm \alpha'_2 \bm \alpha_1\\ \frac{\partial}{\partial \bm \alpha_2}: &\bm \Sigma \bm \alpha_2 - \lambda_2 \bm \alpha_2 - \phi \bm \alpha_1 =0\\ &\bm \alpha_1' \bm \Sigma \bm \alpha_2 - \lambda_2 \bm \alpha_1' \bm \alpha_2 - \phi \bm \alpha_1' \bm \alpha_1 =0\\ \Rightarrow & 0 - 0 - \phi \bm \alpha_1' \bm \alpha_1 =0 \\ \Rightarrow &\phi = 0 \\ \Rightarrow &\bm \Sigma \bm \alpha_2 - \lambda_2 \bm \alpha_2=0 \end{aligned}

參考文獻

  1. Frank Wood, Principal Component Analysis, Columbia University http://www.stat.columbia.edu/~fwood/Teaching/w4315/Fall2009/pca.pdf
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章