pytorch-優化與深度學習

優化與深度學習

優化與估計

儘管優化方法可以最小化深度學習中的損失函數值,但本質上優化方法達到的目標與深度學習的目標並不相同。

  • 優化方法目標:訓練集損失函數值
  • 深度學習目標:測試集損失函數值(泛化性)
%matplotlib inline
import sys
sys.path.append('/home/kesci/input')
import d2lzh1981 as d2l
from mpl_toolkits import mplot3d # 三維畫圖3d圖
import numpy as np
def f(x): return x * np.cos(np.pi * x)
def g(x): return f(x) + 0.2 * np.cos(5 * np.pi * x)

d2l.set_figsize((5, 3))
x = np.arange(0.5, 1.5, 0.01)
fig_f, = d2l.plt.plot(x, f(x),label="train error")
fig_g, = d2l.plt.plot(x, g(x),'--', c='purple', label="test error")
fig_f.axes.annotate('empirical risk', (1.0, -1.2), (0.5, -1.1),arrowprops=dict(arrowstyle='->'))
fig_g.axes.annotate('expected risk', (1.1, -1.05), (0.95, -0.5),arrowprops=dict(arrowstyle='->'))
d2l.plt.xlabel('x')
d2l.plt.ylabel('risk')
d2l.plt.legend(loc="upper right")
    # str是給數據點添加註釋的內容,支持輸入一個字符串
    # xy=是要添加註釋的數據點的位置
    # xytext=是註釋內容的位置
    # bbox=是註釋框的風格和顏色深度,fc越小,註釋框的顏色越深,支持輸入一個字典
    # va="center",  ha="center"表示註釋的座標以註釋框的正中心爲準,而不是註釋框的左下角(v代表垂直方向,h代表水平方向)
    # xycoords和textcoords可以指定數據點的座標系和註釋內容的座標系,通常只需指定xycoords即可,textcoords默認和xycoords相同
    # arrowprops可以指定箭頭的風格支持,輸入一個字典
# 所以總體來說,我們的目標是爲了找到測試集合的最小損失
<matplotlib.legend.Legend at 0x7f43ecf200b8>

優化在深度學習中的挑戰

  1. 局部最小值
  2. 鞍點
  3. 梯度消失

局部最小值

f(x)=xcosπx f(x) = x\cos \pi x

def f(x):
    return x * np.cos(np.pi * x)

d2l.set_figsize((4.5, 2.5))
x = np.arange(-1.0, 2.0, 0.1)
fig,  = d2l.plt.plot(x, f(x))
fig.axes.annotate('local minimum', xy=(-0.3, -0.25), xytext=(-0.77, -1.0),
                  arrowprops=dict(arrowstyle='->'))
fig.axes.annotate('global minimum', xy=(1.1, -0.95), xytext=(0.6, 0.8),
                  arrowprops=dict(arrowstyle='->'))
d2l.plt.xlabel('x')
d2l.plt.ylabel('f(x)');
# 局部最小值和全局最小值

鞍點

  • 鞍點(Saddle point)在微分方程中,沿着某一方向是穩定的,另一條方向是不穩定的奇點,叫做鞍點。 在泛函中,既不是極大值點也不是極小值點的臨界點,叫做鞍點。 在矩陣中,一個數在所在行中是最大值,在所在列中是最小值,則被稱爲鞍點。 在物理上要廣泛一些,指在一個方向是極大值,另一個方向是極小值的點。
x = np.arange(-2.0, 2.0, 0.1)
fig, = d2l.plt.plot(x, x**3)
fig.axes.annotate('saddle point', xy=(0, -0.2), xytext=(-0.52, -5.0),
                  arrowprops=dict(arrowstyle='->'))
d2l.plt.xlabel('x')
d2l.plt.ylabel('f(x)');

A=[2fx122fx1x22fx1xn2fx2x12fx222fx2xn2fxnx12fxnx22fxn2] A=\left[\begin{array}{cccc}{\frac{\partial^{2} f}{\partial x_{1}^{2}}} & {\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}} & {\cdots} & {\frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}} \\ {\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}} & {\frac{\partial^{2} f}{\partial x_{2}^{2}}} & {\cdots} & {\frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}} \\ {\vdots} & {\vdots} & {\ddots} & {\vdots} \\ {\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}} & {\frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}} & {\cdots} & {\frac{\partial^{2} f}{\partial x_{n}^{2}}}\end{array}\right]

e.g.

x, y = np.mgrid[-1: 1: 31j, -1: 1: 31j]
# print(x)
# print(y)
# 一個是行展開,一個是列展開
z = x**2 - y**2

d2l.set_figsize((6, 4))
ax = d2l.plt.figure().add_subplot(111, projection='3d')
ax.plot_wireframe(x, y, z, **{'rstride': 2, 'cstride': 2})
ax.plot([0], [0], [0], 'ro', markersize=10)
ticks = [-1,  0, 1]
d2l.plt.xticks(ticks)
d2l.plt.yticks(ticks)
ax.set_zticks(ticks)
d2l.plt.xlabel('x')
d2l.plt.ylabel('y');
#從下圖看,從一個方向看,他是極大值點,另一個方向看,它是極小值點

梯度消失

x = np.arange(-2.0, 5.0, 0.01)
fig, = d2l.plt.plot(x, np.tanh(x))
d2l.plt.xlabel('x')
d2l.plt.ylabel('f(x)')
fig.axes.annotate('vanishing gradient', (4, 1), (2, 0.0) ,arrowprops=dict(arrowstyle='->'))
Text(2, 0.0, 'vanishing gradient')

凸性 (Convexity):兩點連線上的點也在圖形內部

基礎

集合

Image Name
Image Name
Image Name

函數

λf(x)+(1λ)f(x)f(λx+(1λ)x) \lambda f(x)+(1-\lambda) f\left(x^{\prime}\right) \geq f\left(\lambda x+(1-\lambda) x^{\prime}\right)

def f(x):
    return 0.5 * x**2  # Convex

def g(x):
    return np.cos(np.pi * x)  # Nonconvex

def h(x):
    return np.exp(0.5 * x)  # Convex

x, segment = np.arange(-2, 2, 0.01), np.array([-1.5, 1])
d2l.use_svg_display()
_, axes = d2l.plt.subplots(1, 3, figsize=(9, 3))

for ax, func in zip(axes, [f, g, h]):
    ax.plot(x, func(x))
    ax.plot(segment, func(segment),'--', color="purple")
    # d2l.plt.plot([x, segment], [func(x), func(segment)], axes=ax)

Jensen 不等式:數學歸納法證明

iαif(xi)f(iαixi) and Ex[f(x)]f(Ex[x]) \sum_{i} \alpha_{i} f\left(x_{i}\right) \geq f\left(\sum_{i} \alpha_{i} x_{i}\right) \text { and } E_{x}[f(x)] \geq f\left(E_{x}[x]\right)


性質

  1. 無局部極小值
  2. 與凸集的關係
  3. 二階條件

無局部最小值

證明:假設存在 xXx \in X 是局部最小值,則存在全局最小值 xXx' \in X, 使得 f(x)>f(x)f(x) > f(x'), 則對 λ(0,1]\lambda \in(0,1]:

f(x)>λf(x)+(1λ)f(x)f(λx+(1λ)x) f(x)>\lambda f(x)+(1-\lambda) f(x^{\prime}) \geq f(\lambda x+(1-\lambda) x^{\prime})

與凸集的關係

對於凸函數 f(x)f(x),定義集合 Sb:={xxX and f(x)b}S_{b}:=\{x | x \in X \text { and } f(x) \leq b\},則集合 SbS_b 爲凸集

證明:對於點 x,xSbx,x' \in S_b, 有 f(λx+(1λ)x)λf(x)+(1λ)f(x)bf\left(\lambda x+(1-\lambda) x^{\prime}\right) \leq \lambda f(x)+(1-\lambda) f\left(x^{\prime}\right) \leq b, 故 λx+(1λ)xSb\lambda x+(1-\lambda) x^{\prime} \in S_{b}

f(x,y)=0.5x2+cos(2πy)f(x, y)=0.5 x^{2}+\cos (2 \pi y)

x, y = np.meshgrid(np.linspace(-1, 1, 101), np.linspace(-1, 1, 101),
                   indexing='ij')

z = x**2 + 0.5 * np.cos(2 * np.pi * y)

# Plot the 3D surface
d2l.set_figsize((6, 4))
ax = d2l.plt.figure().add_subplot(111, projection='3d')
ax.plot_wireframe(x, y, z, **{'rstride': 10, 'cstride': 10})
ax.contour(x, y, z, offset=-1)
ax.set_zlim(-1, 1.5)

# Adjust labels
for func in [d2l.plt.xticks, d2l.plt.yticks, ax.set_zticks]:
    func([-1, 0, 1])

凸函數與二階導數

f(x)0f(x)f^{''}(x) \ge 0 \Longleftrightarrow f(x) 是凸函數

必要性 (\Leftarrow):

對於凸函數:

12f(x+ϵ)+12f(xϵ)f(x+ϵ2+xϵ2)=f(x) \frac{1}{2} f(x+\epsilon)+\frac{1}{2} f(x-\epsilon) \geq f\left(\frac{x+\epsilon}{2}+\frac{x-\epsilon}{2}\right)=f(x)

故:

f(x)=limε0f(x+ϵ)f(x)ϵf(x)f(xϵ)ϵϵ f^{\prime \prime}(x)=\lim _{\varepsilon \rightarrow 0} \frac{\frac{f(x+\epsilon) - f(x)}{\epsilon}-\frac{f(x) - f(x-\epsilon)}{\epsilon}}{\epsilon}

f(x)=limε0f(x+ϵ)+f(xϵ)2f(x)ϵ20 f^{\prime \prime}(x)=\lim _{\varepsilon \rightarrow 0} \frac{f(x+\epsilon)+f(x-\epsilon)-2 f(x)}{\epsilon^{2}} \geq 0

充分性 (\Rightarrow):

a<x<ba < x < bf(x)f(x) 上的三個點,由拉格朗日中值定理:

f(x)f(a)=(xa)f(α) for some α[a,x] and f(b)f(x)=(bx)f(β) for some β[x,b] \begin{array}{l}{f(x)-f(a)=(x-a) f^{\prime}(\alpha) \text { for some } \alpha \in[a, x] \text { and }} \\ {f(b)-f(x)=(b-x) f^{\prime}(\beta) \text { for some } \beta \in[x, b]}\end{array}

根據單調性,有 f(β)f(α)f^{\prime}(\beta) \geq f^{\prime}(\alpha), 故:

f(b)f(a)=f(b)f(x)+f(x)f(a)=(bx)f(β)+(xa)f(α)(ba)f(α) \begin{aligned} f(b)-f(a) &=f(b)-f(x)+f(x)-f(a) \\ &=(b-x) f^{\prime}(\beta)+(x-a) f^{\prime}(\alpha) \\ & \geq(b-a) f^{\prime}(\alpha) \end{aligned}

def f(x):
    return 0.5 * x**2

x = np.arange(-2, 2, 0.01)
axb, ab = np.array([-1.5, -0.5, 1]), np.array([-1.5, 1])

d2l.set_figsize((3.5, 2.5))
fig_x, = d2l.plt.plot(x, f(x))
fig_axb, = d2l.plt.plot(axb, f(axb), '-.',color="purple")
fig_ab, = d2l.plt.plot(ab, f(ab),'g-.')

fig_x.axes.annotate('a', (-1.5, f(-1.5)), (-1.5, 1.5),arrowprops=dict(arrowstyle='->'))
fig_x.axes.annotate('b', (1, f(1)), (1, 1.5),arrowprops=dict(arrowstyle='->'))
fig_x.axes.annotate('x', (-0.5, f(-0.5)), (-1.5, f(-0.5)),arrowprops=dict(arrowstyle='->'))
Text(-1.5, 0.125, 'x')

限制條件

minimizexf(x) subject to ci(x)0 for all i{1,,N} \begin{array}{l}{\underset{\mathbf{x}}{\operatorname{minimize}} f(\mathbf{x})} \\ {\text { subject to } c_{i}(\mathbf{x}) \leq 0 \text { for all } i \in\{1, \ldots, N\}}\end{array}

拉格朗日乘子法

Boyd & Vandenberghe, 2004

L(x,α)=f(x)+iαici(x) where αi0 L(\mathbf{x}, \alpha)=f(\mathbf{x})+\sum_{i} \alpha_{i} c_{i}(\mathbf{x}) \text { where } \alpha_{i} \geq 0

懲罰項

欲使 ci(x)0c_i(x) \leq 0, 將項 αici(x)\alpha_ic_i(x) 加入目標函數,如多層感知機章節中的 λ2w2\frac{\lambda}{2} ||w||^2

投影

ProjX(x)=argminxXxx2 \operatorname{Proj}_{X}(\mathbf{x})=\underset{\mathbf{x}^{\prime} \in X}{\operatorname{argmin}}\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}

Image Name

總結

  • 鞍點是對所有自變量一階偏導數都爲0,且Hessian矩陣特徵值有正有負的點,代表在某一個方向是極大值點,某一個方向是極小值點
  • 假設A和B都是凸集合,那以下是凸集合的是:A和B的交集

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章