Linux設備模型之input子系統詳解(second)

 
七:evdev概述
 Evdev對應的設備節點一般位於/dev/input/event0 ~ /dev/input/event4.理論上可以對應32個設備節點.分別代表被handler匹配的32個input device.
可以用cat /dev/input/event0.然後移動鼠標或者鍵盤按鍵就會有數據輸出(兩者之間只能選一.因爲一個設備文件只能關能一個輸入設備).還可以往這個文件裏寫數據,使其產生特定的事件.這個過程我們之後再詳細分析.
爲了分析這一過程,必須從input子系統的初始化說起.
 
八:input子系統的初始化
Input子系統的初始化函數爲input_init().代碼如下:
static int __init input_init(void)
{
         int err;
 
         err = class_register(&input_class);
         if (err) {
                   printk(KERN_ERR "input: unable to register input_dev class\n");
                   return err;
         }
 
         err = input_proc_init();
         if (err)
                   goto fail1;
 
         err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
         if (err) {
                   printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
                   goto fail2;
         }
 
         return 0;
 
 fail2:        input_proc_exit();
 fail1:        class_unregister(&input_class);
         return err;
}
在這個初始化函數裏,先註冊了一個名爲”input”的類.所有input device都屬於這個類.在sysfs中表現就是.所有input device所代表的目錄都位於/dev/class/input下面.
然後調用input_proc_init()在/proc下面建立相關的交互文件.
再後調用register_chrdev()註冊了主設備號爲INPUT_MAJOR(13).次設備號爲0~255的字符設備.它的操作指針爲input_fops.
在這裏,我們看到.所有主設備號13的字符設備的操作最終都會轉入到input_fops中.在前面分析的/dev/input/event0~/dev/input/event4的主設備號爲13.操作也不例外的落在了input_fops中.
Input_fops定義如下:
static const struct file_operations input_fops = {
         .owner = THIS_MODULE,
         .open = input_open_file,
};
打開文件所對應的操作函數爲input_open_file.代碼如下示:
static int input_open_file(struct inode *inode, struct file *file)
{
         struct input_handler *handler = input_table[iminor(inode) >> 5];
         const struct file_operations *old_fops, *new_fops = NULL;
         int err;
 
         /* No load-on-demand here? */
         if (!handler || !(new_fops = fops_get(handler->fops)))
                   return -ENODEV;
 
iminor(inode)爲打開文件所對應的次設備號.input_table是一個struct input_handler全局數組.在這裏.它先設備結點的次設備號右移5位做爲索引值到input_table中取對應項.從這裏我們也可以看到.一 個handle代表1<<5個設備節點(因爲在input_table中取值是以次備號右移5位爲索引的.即低5位相同的次備號對應的是同一 個索引).在這裏,終於看到了input_talbe大顯身手的地方了.input_talbe[ ]中取值和input_talbe[ ]的賦值,這兩個過程是相對應的.
 
在input_table中找到對應的handler之後,就會檢驗這個handle是否存,是否帶有fops文件操作集.如果沒有.則返回一個設備不存在的錯誤.
         /*
          * That's _really_ odd. Usually NULL ->open means "nothing special",
          * not "no device". Oh, well...
          */
         if (!new_fops->open) {
                   fops_put(new_fops);
                   return -ENODEV;
         }
         old_fops = file->f_op;
         file->f_op = new_fops;
 
         err = new_fops->open(inode, file);
 
         if (err) {
                   fops_put(file->f_op);
                   file->f_op = fops_get(old_fops);
         }
         fops_put(old_fops);
         return err;
}
然後將handler中的fops替換掉當前的fops.如果新的fops中有open()函數,則調用它.
 
九:evdev的初始化
Evdev的模塊初始化函數爲evdev_init().代碼如下:
static int __init evdev_init(void)
{
         return input_register_handler(&evdev_handler);
}
它調用了input_register_handler註冊了一個handler.
注意到,在這裏evdev_handler中定義的minor爲EVDEV_MINOR_BASE(64).也就是說evdev_handler所表示的設備文件範圍爲(13,64)à(13,64+32).
從之前的分析我們知道.匹配成功的關鍵在於handler中的blacklist和id_talbe. Evdev_handler的id_table定義如下:
static const struct input_device_id evdev_ids[] = {
         { .driver_info = 1 },     /* Matches all devices */
         { },                       /* Terminating zero entry */
};
它沒有定義flags.也沒有定義匹配屬性值.這個handler是匹配所有input device的.從前面的分析我們知道.匹配成功之後會調用handler->connect函數.
在Evdev_handler中,該成員函數如下所示:
 
static int evdev_connect(struct input_handler *handler, struct input_dev *dev,
                             const struct input_device_id *id)
{
         struct evdev *evdev;
         int minor;
         int error;
 
         for (minor = 0; minor < EVDEV_MINORS; minor++)
                   if (!evdev_table[minor])
                            break;
 
         if (minor == EVDEV_MINORS) {
                   printk(KERN_ERR "evdev: no more free evdev devices\n");
                   return -ENFILE;
         }
EVDEV_MINORS定義爲32.表示evdev_handler所表示的32個設備文件.evdev_talbe是一個struct evdev類型的數組.struct evdev是模塊使用的封裝結構.在接下來的代碼中我們可以看到這個結構的使用.
這一段代碼的在evdev_talbe找到爲空的那一項.minor就是數組中第一項爲空的序號.
 
         evdev = kzalloc(sizeof(struct evdev), GFP_KERNEL);
         if (!evdev)
                   return -ENOMEM;
 
         INIT_LIST_HEAD(&evdev->client_list);
         spin_lock_init(&evdev->client_lock);
         mutex_init(&evdev->mutex);
         init_waitqueue_head(&evdev->wait);
 
         snprintf(evdev->name, sizeof(evdev->name), "event%d", minor);
         evdev->exist = 1;
         evdev->minor = minor;
 
         evdev->handle.dev = input_get_device(dev);
         evdev->handle.name = evdev->name;
         evdev->handle.handler = handler;
         evdev->handle.private = evdev;
接下來,分配了一個evdev結構,並對這個結構進行初始化.在這裏我們可以看到,這個結構封裝了一個handle結構,這結構與我們之前所討 論的handler是不相同的.注意有一個字母的差別哦.我們可以把handle看成是handler和input device的信息集合體.在這個結構裏集合了匹配成功的handler和input device
 
         strlcpy(evdev->dev.bus_id, evdev->name, sizeof(evdev->dev.bus_id));
         evdev->dev.devt = MKDEV(INPUT_MAJOR, EVDEV_MINOR_BASE + minor);
         evdev->dev.class = &input_class;
         evdev->dev.parent = &dev->dev;
         evdev->dev.release = evdev_free;
         device_initialize(&evdev->dev);
在這段代碼裏主要完成evdev封裝的device的初始化.注意在這裏,使它所屬的類指向input_class.這樣在/sysfs中創建的設備目錄就會在/sys/class/input/下面顯示.
 
         error = input_register_handle(&evdev->handle);
         if (error)
                   goto err_free_evdev;
         error = evdev_install_chrdev(evdev);
         if (error)
                   goto err_unregister_handle;
 
         error = device_add(&evdev->dev);
         if (error)
                   goto err_cleanup_evdev;
 
         return 0;
 
 err_cleanup_evdev:
         evdev_cleanup(evdev);
 err_unregister_handle:
         input_unregister_handle(&evdev->handle);
 err_free_evdev:
         put_device(&evdev->dev);
         return error;
}
註冊handle,如果是成功的,那麼調用evdev_install_chrdev將evdev_table的minor項指向evdev. 然後將evdev->device註冊到sysfs.如果失敗,將進行相關的錯誤處理.
萬事俱備了,但是要接收事件,還得要等”東風”.這個”東風”就是要打開相應的handle.這個打開過程是在文件的open()中完成的.
 
十:evdev設備結點的open()操作
我們知道.對主設備號爲INPUT_MAJOR的設備節點進行操作,會將操作集轉換成handler的操作集.在evdev中,這個操作集就是evdev_fops.對應的open函數如下示:
static int evdev_open(struct inode *inode, struct file *file)
{
         struct evdev *evdev;
         struct evdev_client *client;
         int i = iminor(inode) - EVDEV_MINOR_BASE;
         int error;
 
         if (i >= EVDEV_MINORS)
                   return -ENODEV;
 
         error = mutex_lock_interruptible(&evdev_table_mutex);
         if (error)
                   return error;
         evdev = evdev_table[i];
         if (evdev)
                   get_device(&evdev->dev);
         mutex_unlock(&evdev_table_mutex);
 
         if (!evdev)
                   return -ENODEV;
 
         client = kzalloc(sizeof(struct evdev_client), GFP_KERNEL);
         if (!client) {
                   error = -ENOMEM;
                   goto err_put_evdev;
         }
         spin_lock_init(&client->buffer_lock);
         client->evdev = evdev;
         evdev_attach_client(evdev, client);
 
         error = evdev_open_device(evdev);
         if (error)
                   goto err_free_client;
 
         file->private_data = client;
         return 0;
 
 err_free_client:
         evdev_detach_client(evdev, client);
         kfree(client);
 err_put_evdev:
         put_device(&evdev->dev);
         return error;
}
iminor(inode) - EVDEV_MINOR_BASE就得到了在evdev_table[ ]中的序號.然後將數組中對應的evdev取出.遞增devdev中device的引用計數.
分配並初始化一個client.並將它和evdev關聯起來: client->evdev指向它所表示的evdev. 將client掛到evdev->client_list上. 將client賦爲file的私有區.
對應handle的打開是在此evdev_open_device()中完成的.代碼如下:
static int evdev_open_device(struct evdev *evdev)
{
         int retval;
 
         retval = mutex_lock_interruptible(&evdev->mutex);
         if (retval)
                   return retval;
 
         if (!evdev->exist)
                   retval = -ENODEV;
         else if (!evdev->open++) {
                   retval = input_open_device(&evdev->handle);
                   if (retval)
                            evdev->open--;
         }
 
         mutex_unlock(&evdev->mutex);
         return retval;
}
如果evdev是第一次打開,就會調用input_open_device()打開evdev對應的handle.跟蹤一下這個函數:
int input_open_device(struct input_handle *handle)
{
         struct input_dev *dev = handle->dev;
         int retval;
 
         retval = mutex_lock_interruptible(&dev->mutex);
         if (retval)
                   return retval;
 
         if (dev->going_away) {
                   retval = -ENODEV;
                   goto out;
         }
 
         handle->open++;
 
         if (!dev->users++ && dev->open)
                   retval = dev->open(dev);
 
         if (retval) {
                   dev->users--;
                   if (!--handle->open) {
                            /*
                             * Make sure we are not delivering any more events
                             * through this handle
                             */
                            synchronize_rcu();
                   }
         }
 
 out:
         mutex_unlock(&dev->mutex);
         return retval;
}
在這個函數中,我們看到.遞增handle的打開計數.如果是第一次打開.則調用input device的open()函數.
 
十一:evdev的事件處理
經過上面的分析.每當input device上報一個事件時,會將其交給和它匹配的handler的event函數處理.在evdev中.這個event函數對應的代碼爲:
static void evdev_event(struct input_handle *handle,
                            unsigned int type, unsigned int code, int value)
{
         struct evdev *evdev = handle->private;
         struct evdev_client *client;
         struct input_event event;
 
         do_gettimeofday(&event.time);
         event.type = type;
         event.code = code;
         event.value = value;
 
         rcu_read_lock();
 
         client = rcu_dereference(evdev->grab);
         if (client)
                   evdev_pass_event(client, &event);
         else
                   list_for_each_entry_rcu(client, &evdev->client_list, node)
                            evdev_pass_event(client, &event);
 
         rcu_read_unlock();
 
         wake_up_interruptible(&evdev->wait);
}
首先構造一個struct input_event結構.並設備它的type.code,value爲處理事件的相關屬性.如果該設備被強制設置了handle.則調用如之對應的client.
我們在open的時候分析到.會初始化clinet並將其鏈入到evdev->client_list. 這樣,就可以通過evdev->client_list找到這個client了.
對於找到的第一個client都會調用evdev_pass_event( ).代碼如下:
static void evdev_pass_event(struct evdev_client *client,
                                 struct input_event *event)
{
         /*
          * Interrupts are disabled, just acquire the lock
          */
         spin_lock(&client->buffer_lock);
         client->buffer[client->head++] = *event;
         client->head &= EVDEV_BUFFER_SIZE - 1;
         spin_unlock(&client->buffer_lock);
 
         kill_fasync(&client->fasync, SIGIO, POLL_IN);
}
這裏的操作很簡單.就是將event保存到client->buffer中.而client->head就是當前的數據位置.注意這裏是一個環形緩存區.寫數據是從client->head寫.而讀數據則是從client->tail中讀.
 
十二:設備節點的read處理
對於evdev設備節點的read操作都會由evdev_read()完成.它的代碼如下:
static ssize_t evdev_read(struct file *file, char __user *buffer,
                              size_t count, loff_t *ppos)
{
         struct evdev_client *client = file->private_data;
         struct evdev *evdev = client->evdev;
         struct input_event event;
         int retval;
 
         if (count < evdev_event_size())
                   return -EINVAL;
 
         if (client->head == client->tail && evdev->exist &&
             (file->f_flags & O_NONBLOCK))
                   return -EAGAIN;
 
         retval = wait_event_interruptible(evdev->wait,
                   client->head != client->tail || !evdev->exist);
         if (retval)
                   return retval;
 
         if (!evdev->exist)
                   return -ENODEV;
 
         while (retval + evdev_event_size() <= count &&
                evdev_fetch_next_event(client, &event)) {
 
                   if (evdev_event_to_user(buffer + retval, &event))
                            return -EFAULT;
 
                   retval += evdev_event_size();
         }
 
         return retval;
}
首先,它判斷緩存區大小是否足夠.在讀取數據的情況下,可能當前緩存區內沒有數據可讀.在這裏先睡眠等待緩存區中有數據.如果在睡眠的時候,.條件滿足.是不會進行睡眠狀態而直接返回的.
然後根據read()提夠的緩存區大小.將client中的數據寫入到用戶空間的緩存區中.
十三:設備節點的寫操作
同樣.對設備節點的寫操作是由evdev_write()完成的.代碼如下:
 
static ssize_t evdev_write(struct file *file, const char __user *buffer,
                               size_t count, loff_t *ppos)
{
         struct evdev_client *client = file->private_data;
         struct evdev *evdev = client->evdev;
         struct input_event event;
         int retval;
 
         retval = mutex_lock_interruptible(&evdev->mutex);
         if (retval)
                   return retval;
 
         if (!evdev->exist) {
                   retval = -ENODEV;
                   goto out;
         }
 
         while (retval < count) {
 
                   if (evdev_event_from_user(buffer + retval, &event)) {
                            retval = -EFAULT;
                            goto out;
                   }
 
                   input_inject_event(&evdev->handle,
                                        event.type, event.code, event.value);
                   retval += evdev_event_size();
         }
 
 out:
         mutex_unlock(&evdev->mutex);
         return retval;
}
首先取得操作設備文件所對應的evdev.
實際上,這裏寫入設備文件的是一個event結構的數組.我們在之前分析過,這個結構裏包含了事件的type.code和event.
將寫入設備的event數組取出.然後對每一項調用event_inject_event().
這個函數的操作和input_event()差不多.就是將第一個參數handle轉換爲輸入設備結構.然後這個設備再產生一個事件.
代碼如下:
void input_inject_event(struct input_handle *handle,
                            unsigned int type, unsigned int code, int value)
{
         struct input_dev *dev = handle->dev;
         struct input_handle *grab;
         unsigned long flags;
 
         if (is_event_supported(type, dev->evbit, EV_MAX)) {
                   spin_lock_irqsave(&dev->event_lock, flags);
 
                   rcu_read_lock();
                   grab = rcu_dereference(dev->grab);
                   if (!grab || grab == handle)
                            input_handle_event(dev, type, code, value);
                   rcu_read_unlock();
 
                   spin_unlock_irqrestore(&dev->event_lock, flags);
         }
}
我們在這裏也可以跟input_event()對比一下,這裏設備可以產生任意事件,而不需要和設備所支持的事件類型相匹配.
由此可見.對於寫操作而言.就是讓與設備文件相關的輸入設備產生一個特定的事件.
將上述設備文件的操作過程以圖的方式表示如下:
 
Linux設備模型之input子系統詳解(xu) - liaowb1234 - liaowb1234的博客
 
十四:小結
在這一節點,分析了整個input子系統的架構,各個環節的流程.最後還以evdev爲例.將各個流程貫穿在一起.以加深對input子系統的 理解.由此也可以看出.linux設備驅動採用了分層的模式.從最下層的設備模型到設備,驅動,總線再到input子系統最後到input device.這樣的分層結構使得最上層的驅動不必關心下層是怎麼實現的.而下層驅動又爲多種型號同樣功能的驅動提供了一個統一的接口.

 原文地址 http://blog.chinaunix.net/u1/51562/showart_1090628.html
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章