十大排序算法思想和代码总结(Python版)

Table of Contents

一、概述

二、算法简介及代码展示

1.冒泡排序($O(n^2)$)

2.简单选择排序($O(n^2)$)

3.简单插入排序($O(n^2)$)

4.堆排序($O(nlogn)$)

5.快速排序($O(nlogn)$)

6.希尔排序($O(nlogn)$)

7.归并排序($O(nlogn)$)

8.计数排序($O(n+k)$)

9.桶排序($O(n+k)$)

10.基数排序($O(n+k)$)

11.#代码说明

三、总结

四、参考链接


一、概述

在插入、选择、交换这三大类基于比较的排序算法中,时间复杂度会随着优化程度在O(n^2)~O(nlogn)之间变化,希尔排序、快速排序、堆排序分别代表着杰出的优化策略。

基于分治递归思想的归并排序将待排数据像二叉树一样分化至最简单的一个数排序问题,子问题合并时间复杂度可控制在O(n),不难想到整体时间复杂度取决于树的深度,即达到O(nlogn)。

计数排序、桶排序、基数排序三种线性时间排序算法本质上运用了相同的思想:先将数据按一定映射关系分组(桶),然后桶内排序,顺序输出。三种姑且称为‘桶’排序算法在分组函数使用上不同,导致分组粒度不同,带来的额外空间开销出现差异。这三种排序算法适用于数据满足一定的条件,否则额外的空间开销将无法承受。

#时间复杂度指平均时间复杂度

#n:数据规模 ;k:‘桶’个数

上图来源:https://blog.csdn.net/aiya_aiya_/article/details/79846380#%E4%B8%80%E3%80%81%E6%A6%82%E8%BF%B0

上图来源:https://blog.csdn.net/kabuto_hui/article/details/94742528

二、算法简介及代码展示
 

1.冒泡排序($O(n^2)$)

思路:

  1. 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
  2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
  3. 针对所有的元素重复以上的步骤,除了最后一个;
  4. 重复步骤1~3,直到排序完成。

冒泡排序对数据操作n-1轮,每轮找出一个最大(小)值。

操作指对相邻两个数比较与交换,每轮会将一个最值交换到数据列首(尾),像冒泡一样。

每轮操作O(n)次,共O(n)轮,时间复杂度O(n^2)。

额外空间开销出在交换数据时那一个过渡空间,空间复杂度O(1)。

动画展示:https://blog.csdn.net/a546167160/article/details/87516263

def BubbleSort(ls):
    n=len(ls)
    if n<=1:
        return ls
    for i in range (0,n):
        for j in range(0,n-i-1):
            if ls[j]>ls[j+1]:
                (ls[j],ls[j+1])=(ls[j+1],ls[j])
    return ls
x=input("请输入待排序数列:\n")
y=x.split()
arr=[]
for i in  y:
    arr.append(int(i))
arr=BubbleSort(arr)
#print(arr)
print("数列按序排列如下:")
for i in arr:
    print(i,end=' ')

2.简单选择排序($O(n^2)$)
 

n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。

思路:

  1. 初始状态:无序区为R[1…n],有序区为空;
  2. 第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1…i-1]和R(i…n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1…i]和R[i+1…n]分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;n-1趟结束,数组有序化了。

简单选择排序同样对数据操作n-1轮,每轮找出一个最大(小)值。

操作指选择,即未排序数逐个比较交换,争夺最值位置,每轮将一个未排序位置上的数交换成已排序数,即每轮选一个最值。

每轮操作O(n)次,共O(n)轮,时间复杂度O(n^2)。

额外空间开销出在交换数据时那一个过渡空间,空间复杂度O(1)。
 

def  SelectSort(ls):
    n=len(ls)
    if n<=1:
        return ls
    for i in range(0,n-1):
        minIndex=i
        for j in range(i+1,n):          #比较一遍,记录索引不交换
            if ls[j]<ls[minIndex]:
                minIndex=j
        if minIndex!=i:                     #按索引交换
            (ls[minIndex],ls[i])=(ls[i],ls[minIndex])
    return ls
 
x=input("请输入待排序数列:\n")
y=x.split()
arr=[]
for i in  y:
    arr.append(int(i))
arr=SelectSort(arr)
#print(arr)
print("数列按序排列如下:")
for i in arr:
    print(i,end=' ')

3.简单插入排序($O(n^2)$)
 

一般来说,插入排序都采用in-place在数组上实现。

思路:

  1. 从第一个元素开始,该元素可以认为已经被排序;
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置;
  4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
  5. 将新元素插入到该位置后;
  6. 重复步骤2~5。

简单插入排序同样操作n-1轮,每轮将一个未排序树插入排好序列。

开始时默认第一个数有序,将剩余n-1个数逐个插入。插入操作具体包括:比较确定插入位置,数据移位腾出合适空位

每轮操作O(n)次,共O(n)轮,时间复杂度O(n^2)。

额外空间开销出在数据移位时那一个过渡空间,空间复杂度O(1)。
 

def InsertSort(ls):
    n=len(ls)
    if n<=1:
        return ls
    for i in range(1,n):
        j=i
        target=ls[i]            #每次循环的一个待插入的数
        while j>0 and target<ls[j-1]:       #比较、后移,给target腾位置
            ls[j]=ls[j-1]
            j=j-1
        ls[j]=target            #把target插到空位
    return ls
 
x=input("请输入待排序数列:\n")
y=x.split()
arr=[]
for i in  y:
    arr.append(int(i))
arr=InsertSort(arr)
#print(arr)
print("数列按序排列如下:")
for i in arr:
    print(i,end=' ')

4.堆排序($O(nlogn)$)

原理:

  1. 通过构造最大堆,每次把堆顶元素放到数组尾部,再调整最大堆的结构,直到最大堆的元素个数小于2。

堆排序基于比较交换,是冒泡排序的优化。具体涉及大(小)顶堆的建立与调整。

大顶堆指任意一个父节点都不小于左右两个孩子节点的完全二叉树,根节点最大。

堆排序首先建立大顶堆(找出一个最大值),然后用最后一个叶子结点代替根节点后做大顶堆的调整(再找一个最大值),重复

以数组(列表)实现大顶堆时,从上到下,从左到右编号。父节点序号为n,则左右孩子节点序号分别为2*n+1、2*n+2

大顶堆的调整:将仅有根节点不满足条件的完全二叉树,调整为大顶堆的过程。

大顶堆调整方法:将根节点与较大一个儿子节点比较,不满足条件则交换。

                            若发生交换,将被交换儿子节点视作根节点重复上一步

大顶堆的建立:从最后一个非叶子节点开始到根节点结束的一系列大顶堆调整过程。

堆排序的初始建堆过程比价复杂,对O(n)级别个非叶子节点进行堆调整操作O(logn),时间复杂度O(nlogn);之后每一次堆调整操作确定一个数的次序,时间复杂度O(nlogn)。合起来时间复杂度O(nlogn)

额外空间开销出在调整堆过程,根节点下移交换时一个暂存空间,空间复杂度O(1)
 

def  HeapSort(ls):
    def heapadjust(arr,start,end):  #将以start为根节点的堆调整为大顶堆
        temp=arr[start]
        son=2*start+1
        while son<=end:
            if son<end and arr[son]<arr[son+1]:  #找出左右孩子节点较大的
                son+=1
            if temp>=arr[son]:       #判断是否为大顶堆
                break
            arr[start]=arr[son]     #子节点上移
            start=son                     #继续向下比较
            son=2*son+1
        arr[start]=temp             #将原堆顶插入正确位置
#######
    n=len(ls)
    if n<=1:
        return ls
    #建立大顶堆
    root=n//2-1    #最后一个非叶节点(完全二叉树中)
    while(root>=0):
        heapadjust(ls,root,n-1)
        root-=1
    #掐掉堆顶后调整堆
    i=n-1
    while(i>=0):
        (ls[0],ls[i])=(ls[i],ls[0])  #将大顶堆堆顶数放到最后
        heapadjust(ls,0,i-1)    #调整剩余数组成的堆
        i-=1
    return ls
#########
x=input("请输入待排序数列:\n")
y=x.split()
arr=[]
for i in  y:
    arr.append(int(i))
arr=HeapSort(arr)
#print(arr)
print("数列按序排列如下:")
for i in arr:
    print(i,end=' ') 

5.快速排序($O(nlogn)$)

原理:

  1. 利用分治的思想,将原数组分成两个部分,其中左边比中间数字小,右边比中间数字大。而这这划分的数字就是每个子数组的最后一个。
  2. 使用partition函数对数组进行重排,并返回当前划分的位置,再利用递归调用,对每个子数组进行重排,直到所有元素都完成重排。

快速排序基于选择划分,是简单选择排序的优化。

每次划分将数据选到基准值两边,循环对两边的数据进行划分,类似于二分法。

算法的整体性能取决于划分的平均程度,即基准值的选择,此处衍生出快速排序的许多优化方案,甚至可以划分为多块。

基准值若能把数据分为平均的两块,划分次数O(logn),每次划分遍历比较一遍O(n),时间复杂度O(nlogn)。

额外空间开销出在暂存基准值,O(logn)次划分需要O(logn)个,空间复杂度O(logn)
 

def QuickSort(ls):
    def partition(arr,left,right):
        key=left         #划分参考数索引,默认为第一个数,可优化
        while left<right:
            while left<right and arr[right]>=arr[key]:
                right-=1
            while left<right and arr[left]<=arr[key]:
                left+=1
            (arr[left],arr[right])=(arr[right],arr[left])
        (arr[left],arr[key])=(arr[key],arr[left])
        return left
 
    def quicksort(arr,left,right):   #递归调用
        if left>=right:
            return
        mid=partition(arr,left,right)
        quicksort(arr,left,mid-1)
        quicksort(arr,mid+1,right)
    #主函数
    n=len(ls)
    if n<=1:
        return ls
    quicksort(ls,0,n-1)
    return ls
 
x=input("请输入待排序数列:\n")
y=x.split()
arr=[]
for i in  y:
    arr.append(int(i))
arr=QuickSort(arr)
#print(arr)
print("数列按序排列如下:")
for i in arr:
    print(i,end=' ') 

6.希尔排序($O(nlogn)$)

希尔排序基本步骤:

  • 我们选择增量gap=length/2,缩小增量继续以gap = gap/2的方式,这种增量选择我们可以用一个序列来表示,{n/2,(n/2)/2…1},称为增量序列。希尔排序的增量序列的选择与证明是个数学难题,我们选择的这个增量序列是比较常用的,也是希尔建议的增量,称为希尔增量,但其实这个增量序列不是最优的。此处我们做示例使用希尔增量。

(上段引用出处:https://blog.csdn.net/kabuto_hui/article/details/94742528#4_Onlog_n_114

  • 先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:
  1. 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
  2. 按增量序列个数k,对序列进行k 趟排序;
  3. 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
     

希尔排序是插入排序的高效实现,对简单插入排序减少移动次数优化而来。

简单插入排序每次插入都要移动大量数据,前后插入时的许多移动都是重复操作,若一步到位移动效率会高很多。

若序列基本有序,简单插入排序不必做很多移动操作,效率很高。

希尔排序将序列按固定间隔划分为多个子序列,在子序列中简单插入排序,先做远距离移动使序列基本有序;逐渐缩小间隔重复操作,最后间隔为1时即简单插入排序。

希尔排序对序列划分O(n)次,每次简单插入排序O(logn),时间复杂度O(nlogn)

额外空间开销出在插入过程数据移动需要的一个暂存,空间复杂度O(1)

def ShellSort(ls):
    def shellinsert(arr,d):
        n=len(arr)
        for i in range(d,n):
            j=i-d
            temp=arr[i]             #记录要出入的数
            while(j>=0 and arr[j]>temp):    #从后向前,找打比其小的数的位置
                arr[j+d]=arr[j]                 #向后挪动
                j-=d
            if j!=i-d:
                arr[j+d]=temp
    n=len(ls)
    if n<=1:
        return ls
    d=n//2
    while d>=1:
        shellinsert(ls,d)
        d=d//2
    return ls
 
 
x=input("请输入待排序数列:\n")
y=x.split()
arr=[]
for i in  y:
    arr.append(int(i))
arr=ShellSort(arr)
#print(arr)
print("数列按序排列如下:")
for i in arr:
    print(i,end=' ') 

7.归并排序($O(nlogn)$)

思路:

  1. 把长度为n的输入序列分成两个长度为n/2的子序列;
  2. 对这两个子序列分别采用归并排序;
  3. 将两个排序好的子序列合并成一个最终的排序序列。

归并排序运用分治递归思想:将大问题分为较小的子问题,分而治之;递归调用同样的方法解决子问题。最终将序列的排序问题分治为一个数的排序问题,关键在于如何将子问题答案合并为问题答案。

两个有序序列合并为一个有序序列,借助一个暂存数组(列表),两个序列元素依次比较填入暂存列表,形成一个有序序列。

归并排序划分子问题采用二分法,共需O(logn)次划分,当然需要相当次合并;每次合并遍历比较O(n)。时间复杂度O(nlogn)。

额外空间开销出在合并过程中的一个暂存数组,空间复杂度O(n)。
 

def MergeSort(ls):
    #合并左右子序列函数
    def merge(arr,left,mid,right):
        temp=[]     #中间数组
        i=left          #左段子序列起始
        j=mid+1   #右段子序列起始
        while i<=mid and j<=right:
            if arr[i]<=arr[j]:
                temp.append(arr[i])
                i+=1
            else:
                temp.append(arr[j])
                j+=1
        while i<=mid:
            temp.append(arr[i])
            i+=1
        while j<=right:
            temp.append(arr[j])
            j+=1
        for i in range(left,right+1):    #  !注意这里,不能直接arr=temp,他俩大小都不一定一样
            arr[i]=temp[i-left]
    #递归调用归并排序
    def mSort(arr,left,right):
        if left>=right:
            return
        mid=(left+right)//2
        mSort(arr,left,mid)
        mSort(arr,mid+1,right)
        merge(arr,left,mid,right)
 
    n=len(ls)
    if n<=1:
        return ls
    mSort(ls,0,n-1)
    return ls
 
x=input("请输入待排序数列:\n")
y=x.split()
arr=[]
for i in  y:
    arr.append(int(i))
arr=MergeSort(arr)
#print(arr)
print("数列按序排列如下:")
for i in arr:
    print(i,end=' ') 

8.计数排序($O(n+k)$)
 

思路:

  1. 找出待排序的数组中最大和最小的元素;
  2. 统计数组中每个值为i的元素出现的次数,存入数组C的第i项;
  3. 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);
  4. 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。
    【只能对整数进行排序】

计数排序用待排序的数值作为计数数组(列表)的下标,统计每个数值的个数,然后依次输出即可。

计数数组的大小取决于待排数据取值范围,所以对数据有一定要求,否则空间开销无法承受。

计数排序只需遍历一次数据,在计数数组中记录,输出计数数组中有记录的下标,时间复杂度为O(n+k)。

额外空间开销即指计数数组,实际上按数据值分为k类(大小取决于数据取值),空间复杂度O(k)。
 

def CountSort(ls):
    n=len(ls)
    num=max(ls)
    count=[0]*(num+1)
    for i in range(0,n):
        count[ls[i]]+=1
    arr=[]
    for i in range(0,num+1):
        for j in range(0,count[i]):
            arr.append(i)
    return arr
 
 
x=input("请输入待排序数列:\n")
y=x.split()
arr=[]
for i in  y:
    arr.append(int(i))
arr=CountSort(arr)
#print(arr)
print("数列按序排列如下:")
for i in arr:
    print(i,end=' ') 

9.桶排序($O(n+k)$)

思路:

  1. 设置一个定量的数组当作空桶子。
  2. 寻访序列,并且把数据一个一个放到对应的桶子去。
  3. 对每个不是空的桶子进行排序。
  4. 从不是空的桶子里把项目再放回原来的序列中。

桶排序实际上是计数排序的推广,但实现上要复杂许多。

桶排序先用一定的函数关系将数据划分到不同有序的区域(桶)内,然后子数据分别在桶内排序,之后顺次输出。

当每一个不同数据分配一个桶时,也就相当于计数排序。

假设n个数据,划分为k个桶,桶内采用快速排序,时间复杂度为O(n)+O(k * n/k*log(n/k))=O(n)+O(n*(log(n)-log(k))),

显然,k越大,时间复杂度越接近O(n),当然空间复杂度O(n+k)会越大,这是空间与时间的平衡。
 

def BucketSort(ls):
    ##############桶内使用快速排序
    def QuickSort(ls):
        def partition(arr,left,right):
            key=left         #划分参考数索引,默认为第一个数,可优化
            while left<right:
                while left<right and arr[right]>=arr[key]:
                    right-=1
                while left<right and arr[left]<=arr[key]:
                    left+=1
                (arr[left],arr[right])=(arr[right],arr[left])
            (arr[left],arr[key])=(arr[key],arr[left])
            return left
 
        def quicksort(arr,left,right):   #递归调用
            if left>=right:
                return
            mid=partition(arr,left,right)
            quicksort(arr,left,mid-1)
            quicksort(arr,mid+1,right)
        #主函数
        n=len(ls)
        if n<=1:
            return ls
        quicksort(ls,0,n-1)
        return ls
    ######################
    n=len(ls)
    big=max(ls)
    num=big//10+1
    bucket=[]
    buckets=[[] for i in range(0,num)]
    for i in ls:
        buckets[i//10].append(i)     #划分桶
    for i in buckets:                       #桶内排序
        bucket=QuickSort(i)
    arr=[]
    for i in buckets:
        if isinstance(i, list):
            for j in i:
                arr.append(j)
        else:
            arr.append(i)
    for i in range(0,n):
        ls[i]=arr[i]
    return ls
    
x=input("请输入待排序数列:\n")
y=x.split()
arr=[]
for i in  y:
    arr.append(int(i))
arr=BucketSort(arr)
#print(arr)
print("数列按序排列如下:")
for i in arr:
    print(i,end=' ') 

10.基数排序($O(n+k)$)

思路:

  1. 取得数组中的最大数,并取得位数;
  2. arr为原始数组,从最低位开始取每个位组成radix数组;
  3. 对radix进行计数排序(利用计数排序适用于小范围数的特点)。

基数排序进行多轮按位比较排序,轮次取决于最大数据值的位数。

先按照个位比较排序,然后十位百位以此类推,优先级由低到高,这样后面的移动就不会影响前面的。

基数排序按位比较排序实质上也是一种划分,一种另类的‘桶’罢了。比如,第一轮按各个位比较,按个位大小排序分别装入10个‘桶’中,‘桶’中个位相同的数据视作相等,桶是有序的,按序输出,后面轮次接力完成排序。

基数排序‘桶’内数据在划分桶时便已排序O(n),k个桶,时间复杂度为O(n*k)。

额外空间开销出在数据划分入桶过程,桶大小O(n+k),空间复杂度O(n+k)。
 

import math
def RadixSort(ls):
    def getbit(x,i):       #返回x的第i位(从右向左,个位为0)数值
        y=x//pow(10,i)
        z=y%10
        return z
    def CountSort(ls):
        n=len(ls)
        num=max(ls)
        count=[0]*(num+1)
        for i in range(0,n):
            count[ls[i]]+=1
        arr=[]
        for i in range(0,num+1):
            for j in range(0,count[i]):
                arr.append(i)
        return arr
    Max=max(ls)
    for k in range(0,int(math.log10(Max))+1):             #对k位数排k次,每次按某一位来排
        arr=[[] for i in range(0,10)]
        for i in ls:                 #将ls(待排数列)中每个数按某一位分类(0-9共10类)存到arr[][]二维数组(列表)中
            arr[getbit(i,k)].append(i)
        for i in range(0,10):         #对arr[]中每一类(一个列表)  按计数排序排好
            if len(arr[i])>0:
                arr[i]=CountSort(arr[i])
        j=9
        n=len(ls)
        for i in range(0,n):     #顺序输出arr[][]中数到ls中,即按第k位排好
            while len(arr[j])==0:
                j-=1
            else:
                ls[n-1-i]=arr[j].pop()   
    return ls    
    
x=input("请输入待排序数列:\n")
y=x.split()
arr=[]
for i in  y:
    arr.append(int(i))
arr=RadixSort(arr)
#print(arr)
print("数列按序排列如下:")
for i in arr:
    print(i,end=' ') 

11.#代码说明

1.十个排序算法都用函数封装,函数输入整数列表,返回整数列表。

2.测试时输入以空格间隔的整数数列,split处理input采集的字符串,再经数据类型转换后变为整数列表后调用函数;

   输出时采用循环逐个输出。

三、总结

1.三种O(n^2)平均时间复杂度的排序算法在空间复杂度、稳定性方面表现较好,甚至在特定情况下即便考虑时间复杂度也是最佳选择。

2.堆排序初始建堆过程较复杂,仅建堆时间复杂度就达到O(nlogn),但之后的排序开销稳定且较小,所以适合大量数据排序。

3.希尔排序性能看似很好,但实际上他的整体性能受步长选取影响较大,插入排序本质也使他受数据影响较大。

4.归并排序在平均和最坏情况下时间复杂度都表现良好O(nlogn),但昂贵的空间开销大O(n)。

5.快速排序大名鼎鼎,又有个好名字,但最坏情况下时间复杂度直逼O(n^2),远不如堆排序和归并排序。

6.基于比较排序的算法(如前七种)时间复杂度O(nlogn)已是下限。

7.三种线性时间复杂度排序算法虽然在速度上有决定性的优势,但也付出了沉重的空间代价,有时数据的特点让这种空间代价变得无法承受。所以他们的应用对数据本身有着特定的要求。

8.关于稳定性,希尔排序、快速排序和堆排序这三种排序算法无法保障。三种算法因为划分(子序列、大小端、左右孩子)后各自处理无法保证等值数据的原次序。
 

四、参考链接

重要参考1:https://blog.csdn.net/aiya_aiya_/article/details/79846380#%E4%B8%80%E3%80%81%E6%A6%82%E8%BF%B0

重要参考2:https://blog.csdn.net/kabuto_hui/article/details/94742528#7_Onlog_n_276

动画释义:https://blog.csdn.net/a546167160/article/details/87516263

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章