優化方法,一些重要參數learning rate,weight decay,momentum,learing rate decay

http://blog.csdn.net/lien0906/article/details/47399823


http://blog.csdn.net/u014114990/article/details/47779111


Stochastic Gradient Descent (SGD)

SGD的參數

在使用隨機梯度下降(SGD)的學習方法時,一般來說有以下幾個可供調節的參數:

  • Learning Rate 學習率
  • Weight Decay 權值衰減
  • Momentum 動量
  • Learning Rate Decay 學習率衰減

再此之中只有第一的參數(Learning Rate)是必須的,其餘部分都是爲了提高自適應性的參數,也就是說後3個參數不需要時可以設爲0。

Learning Rate

學習率決定了權值更新的速度,設置得太大會使結果越過最優值,太小會使下降速度過慢。僅靠人爲干預調整參數需要不斷修改學習率,因此後面3種參數都是基於自適應的思路提出的解決方案。





SGD優缺點

  • 實現簡單,當訓練樣本足夠多時優化速度非常快
  • 需要人爲調整很多參數,比如學習率,收斂準則等

Averaged Stochastic Gradient Descent (ASGD)

在SGD的基礎上計算了權值的平均值。
$$\bar{w}t=\frac{1}{t-t_0}\sum^t{i=t_0+1} w_t$$

ASGD的參數

在SGD的基礎上增加參數$t_0$

  • 學習率 $\eta$
  • 參數 $t_0$

ASGD優缺點

  • 運算花費和second order stochastic gradient descent (2SGD)一樣小。
  • 比SGD的訓練速度更爲緩慢。
  • $t_0$的設置十分困難

3. Conjugate Gradient(共軛梯度法)

介於最速下降法與牛頓法之間的一個方法,它僅僅需要利用一階導數的信息,克服了GD方法收斂慢的特點。

Link 1

Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) (一種擬牛頓算法)

L-BFGS算法比較適合在大規模的數值計算中,具備牛頓法收斂速度快的特點,但不需要牛頓法那樣存儲Hesse矩陣,因此節省了大量的空間以及計算資源。

Link 1
Link 2
Link 3

應用分析

不同的優化算法有不同的優缺點,適合不同的場合:

  • LBFGS算法在參數的維度比較低(一般指小於10000維)時的效果要比SGD(隨機梯度下降)和CG(共軛梯度下降)效果好,特別是帶有convolution的模型。
  • 針對高維的參數問題,CG的效果要比另2種好。也就是說一般情況下,SGD的效果要差一些,這種情況在使用GPU加速時情況一樣,即在GPU上使用LBFGS和CG時,優化速度明顯加快,而SGD算法優化速度提高很小。
  • 在單核處理器上,LBFGS的優勢主要是利用參數之間的2階近視特性來加速優化,而CG則得得益於參數之間的共軛信息,需要計算器Hessian矩陣。


發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章