redis简介与分布式锁的实现方案

1. redis 简介;

Redis采用的是基于内存的采用的是单进程单线程模型的KV数据库,由C语言编写。官方提供的数据是可以达到100000+的qps。这个数据不比采用单进程多线程的同样基于内存的KV数据库Memcached差。

Redis快的主要原因是:

  1. 完全基于内存
  2. 数据结构简单,对数据操作也简单
  3. 使用多路 I/O 复用模型

多路 I/O 复用模型是利用select、poll、epoll可以同时监察多个流的 I/O 事件的能力,在空闲的时候,会把当前线程阻塞掉,当有一个或多个流有I/O事件时,就从阻塞态中唤醒,于是程序就会轮询一遍所有的流(epoll是只轮询那些真正发出了事件的流),并且只依次顺序的处理就绪的流,这种做法就避免了大量的无用操作。这里“多路”指的是多个网络连接,“复用”指的是复用同一个线程。采用多路 I/O 复用技术可以让单个线程高效的处理多个连接请求(尽量减少网络IO的时间消耗),且Redis在内存中操作数据的速度非常快(内存内的操作不会成为这里的性能瓶颈),主要以上两点造就了Redis具有很高的吞吐量。

和Memcached不同,Redis并没有直接使用Libevent,而是自己完成了一个非常轻量级的对select、epoll、evport、kqueue这些通用的接口的实现。在不同的系统调用选用适合的接口,linux下默认是epoll。因为Libevent比较重更通用代码量也就很庞大,拥有很多Redis用不上的功能,Redis为了追求“轻巧”并且去除依赖,就选择自己去封装了一套。

2 redis分布式锁实现方案;

redis实现分布式锁:
1)setnx(lockkey, 当前时间+过期超时时间) ,如果返回1,则获取锁成功;如果返回0则没有获取到锁,转向2。
2.)get(lockkey)获取值oldExpireTime ,并将这个value值与当前的系统时间进行比较,如果小于当前系统时间,则认为这个锁已经超时,可以允许别的请求重新获取,转向3。
3.)计算newExpireTime=当前时间+过期超时时间,然后getset(lockkey, newExpireTime) 会返回当前lockkey的值currentExpireTime。
4.)判断currentExpireTime与oldExpireTime 是否相等,如果相等,说明当前getset设置成功,获取到了锁。如果不相等,说明这个锁又被别的请求获取走了,那么当前请求可以直接返回失败,或者继续重试。
5) 在获取到锁之后,当前线程可以开始做自增操作,当处理完毕后,比较自己的处理时间和对于锁设置的超时时间,如果小于锁设置的超时时间,则直接执行delete释放锁;如果大于锁设置的超时时间,则不需要再锁进行处理。

 

实现方法2(最新redis):

1.使用set lock_key  lock_uk_tag  NX  EX lockTimeout。其中lock_key是锁标示,lock_uk_tag是获取锁的使用者的唯一标示,lockTimeout 锁失效时间(NX 和EX 详见最新的redis的set命令介绍)。
2.如果返回1则证明获取到锁,0则未获取到锁。
3.当获取到锁之后,进行业务操作完成之后。使用get lock_key获取使用者,如果为null证明锁已经失效了则直接退出。如果有值就当前使用者对比,如果不等不处理锁,如果相等就直接del lock_key 删除锁。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章