Java 內存 內存泄漏與內存溢出

內存方面一般屬於相對底層一點的知識,今天將相關的瞭解與他人的交流總結如下:

java內存泄漏與內存溢出

內存溢出 out of memory,是指程序在申請內存時,沒有足夠的內存空間供其使用,出現out of memory;

內存泄露 memory leak,是指程序在申請內存後,無法釋放已申請的內存空間,一次內存泄露危害可以忽略,但內存泄露堆積後果很嚴重,無論多少內存,遲早會被佔光。

memory leak會最終會導致out of memory!

   以發生的方式來分類,內存泄漏可以分爲4類: 

1. 常發性內存泄漏。發生內存泄漏的代碼會被多次執行到,每次被執行的時候都會導致一塊內存泄漏。 
2. 偶發性內存泄漏。發生內存泄漏的代碼只有在某些特定環境或操作過程下才會發生。常發性和偶發性是相對的。對於特定的環境,偶發性的也許就變成了常發性的。所以測試環境和測試方法對檢測內存泄漏至關重要。 
3. 一次性內存泄漏。發生內存泄漏的代碼只會被執行一次,或者由於算法上的缺陷,導致總會有一塊僅且一塊內存發生泄漏。比如,在類的構造函數中分配內存,在析構函數中卻沒有釋放該內存,所以內存泄漏只會發生一次。 
4. 隱式內存泄漏。程序在運行過程中不停的分配內存,但是直到結束的時候才釋放內存。嚴格的說這裏並沒有發生內存泄漏,因爲最終程序釋放了所有申請的內存。但是對於一個服務器程序,需要運行幾天,幾周甚至幾個月,不及時釋放內存也可能導致最終耗盡系統的所有內存。所以,我們稱這類內存泄漏爲隱式內存泄漏。 

從用戶使用程序的角度來看,內存泄漏本身不會產生什麼危害,作爲一般的用戶,根本感覺不到內存泄漏的存在。真正有危害的是內存泄漏的堆積,這會最終消耗盡系統所有的內存。從這個角度來說,一次性內存泄漏並沒有什麼危害,因爲它不會堆積,而隱式內存泄漏危害性則非常大,因爲較之於常發性和偶發性內存泄漏它更難被檢測到 

 

一、Java內存回收機制 
不論哪種語言的內存分配方式,都需要返回所分配內存的真實地址,也就是返回一個指針到內存塊的首地址。Java中對象是採用new或者反射或者clone或者反序列化的方法創建的, 這些對象的創建都是在堆(Heap)中分配的,所有對象的回收都是由Java虛擬機通過垃圾回收機制完成的。GC爲了能夠正確釋放對象,會監控每個對象的 運行狀況,對他們的申請、引用、被引用、賦值等狀況進行監控,Java會使用有向圖的方法進行管理內存,實時監控對象是否可以達到,如果不可到達,則就將 其回收,這樣也可以消除引用循環的問題。在Java語言中,判斷一個內存空間是否符合垃圾收集標準有兩個:一個是給對象賦予了空值null,以下再沒有調 用過,另一個是給對象賦予了新值,這樣重新分配了內存空間。

二、Java內存泄露引起原因 
首先,什麼是內存泄露?經常聽人談起內存泄露,但要問什麼是內存泄露,沒幾個說得清楚。內存泄露是指無用對象(不再使用的對象)持續佔有內存或無用對象的內存得不到及時釋放,從而造成的內存空間的浪費稱爲內存泄露。內存泄露有時不嚴重且不易察覺,這樣開發者就不知道存在內存泄露,但有時也會很嚴重,會提示 你Out of memory。

內存溢出:指程序運行過程中無法申請到足夠的內存而導致的一種錯誤。存泄露是內存溢出的一種誘因,不是唯一因素
那麼,Java內存泄露根本原因是什麼呢?長生命周期的對象持有短生命週期對象的引用就很可能發生內存泄露,儘管短生命週期對象已經不再需要,但是因爲長生命週期對象持有它的引用而導致不能被回收,這就是java中內存泄露的發生場景。具體主要有如下幾大類: 
1、靜態集合類引起內存泄露: 
像HashMap、Vector等的使用最容易出現內存泄露,這些靜態變量的生命週期和應用程序一致,他們所引用的所有的對象Object也不能被釋放,因爲他們也將一直被Vector等引用着。 
例:

1
2
3
4
5
6
7
Static Vector v = new Vector(10);
for (int i = 1; i<100; i++)
{
  Object o = new Object();
  v.add(o);
  o = null;
}

在這個例子中,循環申請Object 對象,並將所申請的對象放入一個Vector 中,如果僅僅釋放引用本身(o=null),那麼Vector 仍然引用該對象,所以這個對象對GC 來說是不可回收的。因此,如果對象加入到Vector 後,還必須從Vector 中刪除,最簡單的方法就是將Vector對象設置爲null。

2、當集合裏面的對象屬性被修改後,再調用remove()方法時不起作用。

例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
public static void main(String[] args)
{
    Set<Person> set = new HashSet<Person>();
    Person p1 = new Person("唐僧","pwd1",25);
    Person p2 = new Person("孫悟空","pwd2",26);
    Person p3 = new Person("豬八戒","pwd3",27);
    set.add(p1);
    set.add(p2);
    set.add(p3);
    System.out.println("總共有:"+set.size()+" 個元素!"); //結果:總共有:3 個元素!
    p3.setAge(2); //修改p3的年齡,此時p3元素對應的hashcode值發生改變
 
    set.remove(p3); //此時remove不掉,造成內存泄漏
 
    set.add(p3); //重新添加,居然添加成功
    System.out.println("總共有:"+set.size()+" 個元素!"); //結果:總共有:4 個元素!
    for (Person person : set)
    {
        System.out.println(person);
    }
}

3、監聽器 
在java 編程中,我們都需要和監聽器打交道,通常一個應用當中會用到很多監聽器,我們會調用一個控件的諸如addXXXListener()等方法來增加監聽器,但往往在釋放對象的時候卻沒有記住去刪除這些監聽器,從而增加了內存泄漏的機會。

4、各種連接 
比如數據庫連接(dataSourse.getConnection()),網絡連接(socket)和io連接,除非其顯式的調用了其close()方 法將其連接關閉,否則是不會自動被GC 回收的。對於Resultset 和Statement 對象可以不進行顯式回收,但Connection 一定要顯式回收,因爲Connection 在任何時候都無法自動回收,而Connection一旦回收,Resultset 和Statement 對象就會立即爲NULL。但是如果使用連接池,情況就不一樣了,除了要顯式地關閉連接,還必須顯式地關閉Resultset Statement 對象(關閉其中一個,另外一個也會關閉),否則就會造成大量的Statement 對象無法釋放,從而引起內存泄漏。這種情況下一般都會在try裏面去的連接,在finally裏面釋放連接。

5、內部類和外部模塊等的引用 
內部類的引用是比較容易遺忘的一種,而且一旦沒釋放可能導致一系列的後繼類對象沒有釋放。此外程序員還要小心外部模塊不經意的引用,例如程序員A 負責A 模塊,調用了B 模塊的一個方法如: 
public void registerMsg(Object b); 
這種調用就要非常小心了,傳入了一個對象,很可能模塊B就保持了對該對象的引用,這時候就需要注意模塊B 是否提供相應的操作去除引用。

6、單例模式 
不正確使用單例模式是引起內存泄露的一個常見問題,單例對象在被初始化後將在JVM的整個生命週期中存在(以靜態變量的方式),如果單例對象持有外部對象的引用,那麼這個外部對象將不能被jvm正常回收,導致內存泄露,考慮下面的例子: 
顯然B採用singleton模式,它持有一個A對象的引用,而這個A類的對象將不能被回收。想象下如果A是個比較複雜的對象或者集合類型會發生什麼情況


發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章