高并发学习笔记--通用设计方法

       

高并发学习笔记系列

高并发学习笔记--通用设计方法

高并发学习笔记--架构分层


       从古至今,长江和黄河流域水患不断,远古时期,大禹曾拓宽河道,清除淤沙让流水更加顺畅;都江堰作为史上最成功的的治水案例之一,用引流将岷江之水分流到多个支流中,以分担水流压力;三门峡和葛洲坝通过建造水库将水引入水库先存储起来,然后再想办法把水库中的水缓缓地排出去,以此提高下游的抗洪能力。

        而我们在应对高并发大流量时也会采用类似“抵御洪水”的方案,归纳起来共有三种方法。

  • Scale-out(横向扩展):分而治之是一种常见的高并发系统设计方法,采用分布式部署的方式把流量分流开,让每个服务器都承担一部分并发和流量。
  • 缓存:使用缓存来提高系统的性能,就好比用“拓宽河道”的方式抵抗高并发大流量的冲击。
  • 异步:在某些场景下,未处理完成之前,我们可以让请求先返回,在数据准备好之后再通知请求方,这样可以在单位时间内处理更多的请求。

Scale-up&Scale-out 

  • Scale-up,通过购买性能更好的硬件来提升系统的并发处理能力,比方说目前系统 4 核 4G 每秒可以处理 200 次请求,那么如果要处理 400 次请求呢?很简单,我们把机器的硬件提升到 8 核 8G
  • Scale-out,则是另外一个思路,它通过将多个低性能的机器组成一个分布式集群来共同抵御高并发流量的冲击。沿用刚刚的例子,我们可以使用两台 4 核 4G 的机器来处理那 400 次请求。

 Scale-up与Scale-out 如何选择?

         一般来讲,在我们系统设计初期会考虑使用 Scale-up 的方式,因为这种方案足够简单,所谓能用堆砌硬件解决的问题就用硬件来解决,但是当系统并发超过了单机的极限时,我们就要使用 Scale-out 的方式。

Scale-out有哪些实现方式?

  • 数据库一主多从
  • 分库分表
  • 存储分片

使用缓存提升性能

        Web 2.0 是缓存的时代,这一点毋庸置疑。缓存遍布在系统设计的每个角落,从操作系统到浏览器,从数据库到消息队列,任何略微复杂的服务和组件中,你都可以看到缓存的影子。我们使用缓存的主要作用是提升系统的访问性能,那么在高并发的场景下,就可以支撑更多用户的同时访问。

        众所周知我们的数据最终是固化到磁盘上的,比如数据库存储、文件存储。但是磁盘又是响应和性能最慢的介质。因此,我们通常使用以内存作为存储介质的缓存,以此提升性能。

异步处理

异步也是一种常见的高并发设计方法,我们在很多文章和演讲中都能听到这个名词,与之共同出现的还有它的反义词:同步。比如,分布式服务框架 Dubbo 中有同步方法调用和异步方法调用,IO 模型中有同步 IO 和异步 IO。

什么是同步,什么是异步?

        以方法调用为例,同步调用代表调用方要阻塞等待被调用方法中的逻辑执行完成。这种方式下,当被调用方法响应时间较长时,会造成调用方长久的阻塞,在高并发下会造成整体系统性能下降甚至发生雪崩。

        异步调用恰恰相反,调用方不需要等待方法逻辑执行完成就可以返回执行其他的逻辑,在被调用方法执行完毕后再通过回调、事件通知等方式将结果反馈给调用方。

        异步调用在大规模高并发系统中被大量使用,比如我们熟知的 12306 网站。当我们订票时,页面会显示系统正在排队,这个提示就代表着系统在异步处理我们的订票请求。在 12306 系统中查询余票、下单和更改余票状态都是比较耗时的操作,可能涉及多个内部系统的互相调用,如果是同步调用就会像 12306 刚刚上线时那样,高峰期永远不可能下单成功。

        而采用异步的方式,后端处理时会把请求丢到消息队列中,同时快速响应用户,告诉用户我们正在排队处理,然后释放出资源来处理更多的请求。订票请求处理完之后,再通知用户订票成功或者失败。

        处理逻辑后移到异步处理程序中,Web 服务的压力小了,资源占用的少了,自然就能接收更多的用户订票请求,系统承受高并发的能力也就提升了。

 

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章