深入理解Java虚拟机-第十三章 Java 内存模型与线程

第十三章 Java 内存模型与线程

13.1 概述

13.2 线程安全

“线程安全”一个比较恰当的定义:“当多个线程同时访问一个对象时,如果不用考虑这些线程在运行时环境下的调度和交替执行,也不需要进行额外的同步,或者在调用方进行任何其他的协调操作,调用这个对象的行为都可以获得正确的结果,那就称这个对象是线程安全的。”
这个定义就很严谨而且有可操作性,它要求线程安全的代码都必须具备一个共同特征:代码本身封装了所有必要的正确性保障手段(如互斥同步等),令调用者无须关心多线程下的调用问题,更无须自己实现任何措施来保证多线程环境下的正确调用。

13.2.1 Java 语言中的线程安全

为了更深入地理解线程安全,在这里我们可以不把线程安全当作一个非真即假的二元排他选项来看待,而是按照线程安全的“安全程度”由强至弱来排序,我们可以将 Java 语言中各种操作共享的数据分为以下五类:不可变、绝对线程安全、相对线程安全、线程兼容和线程对立:

  1. 不可变:在Java语言里面(特指 JDK 5 以后,即 Java 内存模型被修正之后的 Java 语言),不可变(Immutable)的对象一定是线程安全的,无论是对象的方法实现还是方法的调用者,都不需要再进行任何线程安全保障措施。
    Java语言中,如果多线程共享的数据是一个基本数据类型,那么只要在定义时使用final关键字修饰它就可以保证它是不可变的。如果共享数据是一个对象,由于Java语言目前暂时还没有提供值类型的支持,那就需要对象自行保证其行为不会对其状态产生任何影响才行。保证对象行为不影响自己状态的途径有很多种,最简单的一种就是把对象里面带有状态的变量都声明为final,这样在构造函数结束之后,它就是不可变的。
  2. 绝对线程安全:绝对的线程安全能够完全满足Brian Goetz给出的线程安全的定义,这个定义其实是很严格的,一个类要达到“不管运行时环境如何,调用者都不需要任何额外的同步措施”可能需要付出非常高昂的,甚至不切实际的代价。如果说java.util.Vector是一个线程安全的容器,相信所有的Java程序员对此都不会有异议,因为它的add()、get()和size()等方法都是被synchronized修饰的,尽管这样效率不高,但保证了具备原子性、可见性和有序性。不过,即使它所有的方法都被修饰成synchronized,也不意味着调用它的时候就永远都不再需要同步手段了,例如:
    public class Test {
    
        private static Vector<Integer> vector = new Vector<>();
    
        public static void main(String[] args) {
            while (true) {
    
                for (int i = 0; i < 10; i++) {
                    vector.add(i);
                }
    
                new Thread(() -> {
                    for (int i = 0; i < vector.size(); i++) {
                        vector.remove(i);
                    }
                }).start();
    
                new Thread(() -> {
                    for (int i = 0; i < vector.size(); i++) {
                        vector.get(i);
                    }
                }).start();
    
                while (Thread.activeCount() > 20) {
    
                }
            }
        }
    }
    
    会报错如下:
    报错
    很明显,尽管这里使用到的Vector的get()、remove()和size()方法都是同步的,但是在多线程的环境中,如果不在方法调用端做额外的同步措施,使用这段代码仍然是不安全的。因为如果另一个线程恰好在错误的时间里删除了一个元素,导致序号i已经不再可用,再用i访问数组就会抛出一个ArrayIndexOutOfBoundsException异常。如果要保证这段代码能正确执行下去,我们必须在获取和清除处加上锁。如:
       new Thread(() -> {
           synchronized (vector) {
               for (int i = 0; i < vector.size(); i++) {
                   vector.remove(i);
               }
           }
       }).start();
    
       new Thread(() -> {
           synchronized (vector) {
               for (int i = 0; i < vector.size(); i++) {
                   System.out.print(vector.get(i));
               }
           }
       }).start();
    
    假如Vector一定要做到绝对的线程安全,那就必须在它内部维护一组一致性的快照访问才行,每次对其中元素进行改动都要产生新的快照,这样要付出的时间和空间成本都是非常大的。
  3. 相对线程安全:相对线程安全就是我们通常意义上所讲的线程安全,它需要保证对这个对象单次的操作是线程安全的,我们在调用的时候不需要进行额外的保障措施,但是对于一些特定顺序的连续调用,就可能需要在调用端使用额外的同步手段来保证调用的正确性。在Java语言中,大部分声称线程安全的类都属于这种类型,例如Vector、HashTable、Collections的synchronizedCollection()方法包装的集合等。
  4. 线程兼容:线程兼容是指对象本身并不是线程安全的,但是可以通过在调用端正确地使用同步手段来保证对象在并发环境中可以安全地使用。我们平常说一个类不是线程安全的,通常就是指这种情况。Java类库API中大部分的类都是线程兼容的,如与前面的Vector和HashTable相对应的集合类ArrayList和HashMap等。
  5. 线程对立:线程对立是指不管调用端是否采取了同步措施,都无法在多线程环境中并发使用代码。由于Java语言天生就支持多线程的特性,线程对立这种排斥多线程的代码是很少出现的,而且通常都是有害的,应当尽量避免。

13.2.2 线程安全的实现方法

这里仅概述,后面会再开专栏讲述高并发
实现方法有以下几种:

  • 互斥同步:互斥同步(Mutual Exclusion & Synchronization)是一种最常见也是最主要的并发正确性保障手段。同步是指在多个线程并发访问共享数据时,保证共享数据在同一个时刻只被一条(或者是一些,当使用信号量的时候)线程使用。而互斥是实现同步的一种手段,临界区(Critical Section)、互斥量(Mutex)和信号量(Semaphore)都是常见的互斥实现方式。因此在“互斥同步”这四个字里面,互斥是因,同步是果;互斥是方法,同步是目的。
    在Java里面,最基本的互斥同步手段就是s ynchronized 关键字,这是一种块结构(Block Structured)的同步语法。synchronized 关键字经过 Javac 编译之后,会在同步块的前后分别形成 monitorenter 和 monitorexit 这两个字节码指令。这两个字节码指令都需要一个 reference 类型的参数来指明要锁定和解锁的对象。如果 Java 源码中的 synchronized 明确指定了对象参数,那就以这个对象的引用作为 reference ;如果没有明确指定,那将根据 synchronized 修饰的方法类型(如实例方法或类方法),来决定是取代码所在的对象实例还是取类型对应的Class对象来作为线程要持有的锁。
    关于 synchronized 我们有两条直接结论:

    • 被 synchronized 修饰的同步块对同一条线程来说是可重入的。这意味着同一线程反复进入同步块也不会出现自己把自己锁死的情况。
    • 被 synchronized 修饰的同步块在持有锁的线程执行完毕并释放锁之前,会无条件地阻塞后面其他线程的进入。这意味着无法像处理某些数据库中的锁那样,强制已获取锁的线程释放锁;也无法强制正在等待锁的线程中断等待或超时退出。

    Java 的线程是映射到操作系统的原生内核线程之上的,如果要阻塞或唤醒一条线程,则需要操作系统来帮忙完成,这就不可避免地陷入用户态到核心态的转换中,进行这种状态转换需要耗费很多的处理器时间。因此才说,synchronized 是Java语言中一个重量级的操作。
    于是 JDK 5 中引入了新的并发包 J.U.C( java.util.concurrent),其中的 java.util.concurrent.locks.Lock 接口便成了Java的另一种全新的互斥同步手段。重入锁(ReentrantLock)是Lock接口最常见的一种实现,顾名思义,它与 synchronized 一样是可重入的。在基本用法上,ReentrantLock 也与 synchronized 很相似,只是代码写法上稍有区别而已。不过,ReentrantLock 与 synchronized 相比增加了一些高级功能,主要有以下三项:等待可中断、可实现公平锁及锁可以绑定多个条件:

    • 等待可中断:是指当持有锁的线程长期不释放锁的时候,正在等待的线程可以选择放弃等待,改为处理其他事情。可中断特性对处理执行时间非常长的同步块很有帮助。
    • 公平锁:是指多个线程在等待同一个锁时,必须按照申请锁的时间顺序来依次获得锁;而非公平锁则不保证这一点,在锁被释放时,任何一个等待锁的线程都有机会获得锁。synchronized中的锁是非公平的,ReentrantLock在默认情况下也是非公平的,但可以通过带布尔值的构造函数要求使用公平锁。不过一旦使用了公平锁,将会导致ReentrantLock的性能急剧下降,会明显影响吞吐量。
    • 锁绑定多个条件:是指一个ReentrantLock对象可以同时绑定多个Condition对象。在synchronized中,锁对象的wait()跟它的notify()或者notifyAll()方法配合可以实现一个隐含的条件,如果要和多于一个的条件关联的时候,就不得不额外添加一个锁;而ReentrantLock则无须这样做,多次调用newCondition()方法即可。如果需要使用上述功能,使用ReentrantLock是一个很好的选择,那如果是基于性能考虑呢?synchronized对性能的影响,尤其在JDK 5之前是很显著的,为此在JDK 6中还专门进行过针对性的优化。
      作者在引入 ReentrantLock 后,还是推荐使用 synchronized,主要原因是方便并且一目了然。广大的 Java 程序员还是较为熟悉 sync。
  • 非阻塞同步:互斥同步面临的主要问题是进行线程阻塞和唤醒所带来的性能开销,因此这种同步也被称为阻塞同步(BlockingSynchronization)。从解决问题的方式上看,互斥同步属于一种悲观的并发策略,其总是认为只要不去做正确的同步措施(例如加锁),那就肯定会出现问题。那我们有悲观肯定反之有乐观锁。所谓乐观锁就是不管风险,先进行操作,如果没有其他线程争用共享数据,那操作就直接成功了;如果共享的数据的确被争用,产生了冲突,那再进行其他的补偿措施,例如重试或者回滚。硬件保证某些从语义上看起来需要多次操作的行为可以只通过一条处理器指令就能完成,这类指令常用的有:

    • 测试并设置(Test-and-Set);
    • 获取并增加(Fetch-and-Increment);
    • 交换(Swap);
    • 比较并交换(Compare-and-Swap,下文称CAS);
    • 加载链接/条件储存(Load-Linked/Store-Conditional,下文称LL/SC)。

    因为Java里最终暴露出来的是CAS操作,所以我们以CAS指令为例进行讲解。CAS指令需要有三个操作数,分别是内存位置(在Java中可以简单地理解为变量的内存地址,用V表示)、旧的预期值(用A表示)和准备设置的新值(用B表示)。CAS指令执行时,当且仅当V符合A时,处理器才会用B更新V的值,否则它就不执行更新。但是,不管是否更新了V的值,都会返回V的旧值,上述的处理过程是一个原子操作,执行期间不会被其他线程中断。JDK 9之后,Java类库在VarHandle类里开放了面向用户程序使用的CAS操作。
    但 CAS 仍然无法完美的解决问题如 ABA 问题。就是说操作数在中间改变过一次,但很快又改回来了。操作和比对时都是没问题的,但实际上中间改过一版。如果需要解决ABA问题,改用传统的互斥同步可能会比原子类更为高效。

  • 无同步方案:要保证线程安全,也并非一定要进行阻塞或非阻塞同步,同步与线程安全两者没有必然的联系。同步只是保障存在共享数据争用时正确性的手段,如果能让一个方法本来就不涉及共享数据,那它自然就不需要任何同步措施去保证其正确性,因此会有一些代码天生就是线程安全的。例如:

    • 线程本地存储(Thread Local Storage):如果一段代码中所需要的数据必须与其他代码共享,那就看看这些共享数据的代码是否能保证在同一个线程中执行。如果能保证,我们就可以把共享数据的可见范围限制在同一个线程之内,这样,无须同步也能保证线程之间不出现数据争用的问题。

13.3 锁优化

锁优化技术,如适应性自旋(Adaptive Spinning)、锁消除(Lock Elimination)、锁膨胀(LockCoarsening)、轻量级锁(Lightweight Locking)、偏向锁(Biased Locking)等

13.3.1 自旋锁与自适应自旋

自选锁很简单,因为切换线程时对线程进行挂起和唤醒操作都需要转入内核态中完成,这些对性能带来很大困扰。于是能不能先不让这个线程挂起,让他原地转一会儿,万一转一会儿的时间这个锁就被释放了呢,不就省一次挂起和唤醒嘛,这就是自旋锁。那什么是自适应锁呢,就是说我不能一直在这转啊,你得给我个时间啊,自适应意味着自旋的时间不再是固定的了,而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定的。如果在同一个锁对象上,自旋等待刚刚成功获得过锁,并且持有锁的线程正在运行中,那么虚拟机就会认为这次自旋也很有可能再次成功,进而允许自旋等待持续相对更长的时间,比如持续100次忙循环。另一方面,如果对于某个锁,自旋很少成功获得过锁,那在以后要获取这个锁时将有可能直接省略掉自旋过程,以避免浪费处理器资源。

13.3.2 锁消除

锁消除是指虚拟机即时编译器在运行时,对一些代码要求同步,但是对被检测到不可能存在共享数据竞争的锁进行消除。主要判定依据是通过逃逸分析的数据支持,如果判断到一段代码中,在堆上的所有数据都不会逃逸出去被其他线程访问到,那就可以把它们当作栈上数据对待,认为它们是线程私有的,同步加锁自然就无须再进行。
例如 StringBuffer 的 append 方法,这个方法是同步方法,如果变量未逃逸的话,这里虽然有锁,但是可以被安全地消除掉。在解释执行时这里仍然会加锁,但在经过服务端编译器的即时编译之后,这段代码就会忽略所有的同步措施而直接执行。

13.3.3 锁粗化

原则上,我们在编写代码的时候,总是推荐将同步块的作用范围限制得尽量小——只在共享数据的实际作用域中才进行同步,这样是为了使得需要同步的操作数量尽可能变少,即使存在锁竞争,等待锁的线程也能尽可能快地拿到锁。但是碰到如下代码:

public class Test {

    public static void main(String[] args) {
        for (int i = 0; i < 100; i++) {
            synchronized (Test.class){
                // do something...
            }
        }
    }
}

这里的 sync 就会被粗化到锁住整个 for 循环。

13.3.4 轻量级锁

轻量级锁是JDK 6时加入的新型锁机制,它名字中的“轻量级”是相对于使用操作系统互斥量来实现的传统锁而言的,因此传统的锁机制就被称为“重量级”锁。
还记得我们第二章就学过的 Mark Word 嘛。那时候提了一句轻量级锁,我们接着来看看下面这个熟悉的表格吧:
Mark Word
轻量级锁的工作过程就是:在代码即将进入同步块的时候,如果此同步对象没有被锁定(锁标志位为“01”状态),虚拟机首先将在当前线程的栈帧中建立一个名为锁记录(Lock Record)的空间,用于存储锁对象目前的Mark Word的拷贝(官方为这份拷贝加了一个Displaced前缀,即Displaced Mark Word),这时候线程堆栈与对象头的状态如图所示:
线程堆栈与对象头的状态
然后,虚拟机将使用CAS操作尝试把对象的Mark Word更新为指向Lock Record的指针。如果这个更新动作成功了,即代表该线程拥有了这个对象的锁,并且对象Mark Word的锁标志位(Mark Word的最后两个比特)将转变为“00”,表示此对象处于轻量级锁定状态。这时候线程堆栈与对象头的状态如图所示。
线程堆栈与对象头的状态
如果这个更新操作失败了,那就意味着至少存在一条线程与当前线程竞争获取该对象的锁。虚拟机首先会检查对象的Mark Word是否指向当前线程的栈帧,如果是,说明当前线程已经拥有了这个对象的锁,那直接进入同步块继续执行就可以了,否则就说明这个锁对象已经被其他线程抢占了。如果出现两条以上的线程争用同一个锁的情况,那轻量级锁就不再有效,必须要膨胀为重量级锁,锁标志的状态值变为“10”,此时Mark Word中存储的就是指向重量级锁(互斥量)的指针,后面等待锁的线程也必须进入阻塞状态。
上面描述的是轻量级锁的加锁过程,它的解锁过程也同样是通过CAS操作来进行的,如果对象的Mark Word仍然指向线程的锁记录,那就用CAS操作把对象当前的Mark Word和线程中复制的Displaced Mark Word替换回来。假如能够成功替换,那整个同步过程就顺利完成了;如果替换失败,则说明有其他线程尝试过获取该锁,就要在释放锁的同时,唤醒被挂起的线程。

13.3.5 偏向锁

偏向锁也很简单,就是在上文讲到过的 Mark Word 中,存上当前持有锁的线程ID,如果这个线程下次进来还是自己的 ID 时,就不需要再去抢锁了,直接执行就好了。
偏向锁、轻量级锁的状态转化及对象Mark Word的关系
细心的读者看到这里可能会发现一个问题:当对象进入偏向状态的时候,Mark Word大部分的空间(23个比特)都用于存储持有锁的线程ID了,这部分空间占用了原有存储对象哈希码的位置,那原来对象的哈希码怎么办呢?
在Java语言里面一个对象如果计算过哈希码,就应该一直保持该值不变(强烈推荐但不强制,因为用户可以重载hashCode()方法按自己的意愿返回哈希码),否则很多依赖对象哈希码的API都可能存在出错风险。而作为绝大多数对象哈希码来源的Object::hashCode()方法,返回的是对象的一致性哈希码(Identity Hash Code),这个值是能强制保证不变的,它通过在对象头中存储计算结果来保证第一次计算之后,再次调用该方法取到的哈希码值永远不会再发生改变。因此,当一个对象已经计算过一致性哈希码后,它就再也无法进入偏向锁状态了;而当一个对象当前正处于偏向锁状态,又收到需要计算其一致性哈希码请求[插图]时,它的偏向状态会被立即撤销,并且锁会膨胀为重量级锁。在重量级锁的实现中,对象头指向了重量级锁的位置,代表重量级锁的ObjectMonitor类里有字段可以记录非加锁状态(标志位为“01”)下的Mark Word,其中自然可以存储原来的哈希码。

至此,深入理解虚拟机终于完结。
专栏文章内大篇幅引用了原书 《深入理解 Java 虚拟机:JVM高级特性与最佳实践》 的文字,希望有条件的童鞋购买原书支持作者!
截止完篇 最新的已经出到了第三版。迫不及待要去买一本比对了。

读书越多越发现自己的无知,Keep Fighting!

本文仅是在自我学习 《深入理解Java虚拟机》这本书后进行的自我总结,有错欢迎友善指正。

欢迎友善交流,不喜勿喷~
Hope can help~

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章