ZooKeeper原理

1、原理概述

          ZooKeeper 的核心是原子广播机制,这个机制包子了各个server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分别是恢复模式和广播模式。

 (1) 恢复模式

         当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数server完成了和leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和server具有相同的系统状态。

(2) 广播模式

         一旦Leader已经和多数的Follower进行了状态同步后,他就可以开始广播消息了,即进入广播状态。这时候当一个Server加入ZooKeeper服务中,它会在恢复模式下启动,发现Leader,并和Leader进行状态同步。待到同步结束,它也参与消息广播。ZooKeeper服务一直维持在Broadcast状态,直到Leader崩溃了或者Leader失去了大部分的Followers支持。

         Broadcast模式极其类似于分布式事务中的2pc(two-phrase commit 两阶段提交):即Leader提起一个决议,由Followers进行投票,Leader对投票结果进行计算决定是否通过该决议,如果通过执行该决议(事务),否则什么也不做。

     在广播模式ZooKeeper Server会接受Client请求,所有的写请求都被转发给领导者,再由领导者将更新广播给跟随者。当半数以上的跟随者已经将修改持久化之后,领导者才会提交这个更新,然后客户端才会收到一个更新成功的响应。这个用来达成共识的协议被设计成具有原子性,因此每个修改要么成功要么失败   

 

2、Zab协议详解

2、1 广播模式

      广播模式类似一个简单的两阶段提交:Leader发起一个请求,收集选票,并且最终提交,图3.3演示了我们协议的消息流程。我们可以简化该两阶段提交协议,因为我们并没有"aborts"的情况。followers要么确认Leader的Propose,要么丢弃该Leader的Propose。没有"aborts"意味着,只要有指定数量的机器确认了该Propose,而不是等待所有机器的回应。

        广播协议在所有的通讯过程中使用TCP的FIFO信道,通过使用该信道,使保持有序性变得非常的容易。通过FIFO信道,消息被有序的deliver。只要收到的消息一被处理,其顺序就会被保存下来。

        Leader会广播已经被deliver的Proposal消息。在发出一个Proposal消息前,Leader会分配给Proposal一个单调递增的唯一id,称之为zxid。因为Zab保证了因果有序,所以递交的消息也会按照zxid进行排序。广播是把Proposal封装到消息当中,并添加到指向Follower的输出队列中,通过FIFO信道发送到 Follower。当Follower收到一个Proposal时,会将其写入到磁盘,可以的话进行批量写入。一旦被写入到磁盘媒介当中,Follower就会发送一个ACK给Leader。 当Leader收到了指定数量的ACK时,Leader将广播commit消息并在本地deliver该消息。当收到Leader发来commit消息时,Follower也会递交该消息。

   需要注意的是, 该简化的两阶段提交自身并不能解决Leader故障,所以我们 添加恢复模式来解决Leader故障。

2、2 恢复模式

   (1) 恢复阶段概述

          正常工作时Zab协议会一直处于广播模式,直到Leader故障或失去了指定数量的Followers。为了保证进度,恢复过程中必须选举出一个新Leader,并且最终让所有的Server拥有一个正确的状态。对于Leader选举,需要一个能够成功高几率的保证存活的算法。Leader选举协议,不仅能够让一个Leader得知它是leader,并且有指定数量的Follower同意该决定。如果Leader选举阶段发生错误,那么Servers将不会取得进展。最终会发生超时,重新进行Leader选举。在我们的实现中,Leader选举有两种不同的实现方式。如果有指定数量的Server正常运行,快速选举的完成只需要几百毫秒。

(2)恢复阶段的保证

       该恢复过程的复杂部分是在一个给定的时间内,提议冲突的绝对数量。最大数量冲突提议是一个可配置的选项,但是默认是1000。为了使该协议能够即使在Leader故障的情况下也能正常运作。我们需要做出两条具体的保证:

① 我们绝不能遗忘已经被deliver的消息,若一条消息在一台机器上被deliver,那么该消息必须将在每台机器上deliver。

② 我们必须丢弃已经被skip的消息。

(3) 保证示例

第一条:

       若一条消息在一台机器上被deliver,那么该消息必须将在每台机器上deliver,即使那台机器故障了。例如,出现了这样一种情况:Leader发送了commit消息,但在该commit消息到达其他任何机器之前,Leader发生了故障。也就是说,只有Leader自己收到了commit消息。如图3.4中的C2。

 图3.4是"第一条保证"(deliver消息不能忘记)的一个示例。在该图中Server1是一个Leader,我们用L1表示,Server2和Server3为Follower。首先Leader发起了两个Proposal,P1和P2,并将P1、P2发送给了Server1和Server2。然后Leader对P1发起了Commit即C1,之后又发起了一个Proposal即P3,再后来又对P2发起了commit即C2,就在此时我们的Leader挂了。那么这时候,P3和C2这两个消息只有Leader自己收到了。

  因为Leader已经deliver了该C2消息,client能够在消息中看到该事务的结果。所以该事务必须能够在其他所有的Server中deliver,最终使得client看到了一个一致性的服务视图。

第二条:

一个被skip的消息,必须仍然需要被skip。例如,发生了这样一种情况:Leader发送了propose消息,但在该propose消息到达其他任何机器之前,Leader发生了故障。也就是说,只有Leader自己收到了propose消息。如图3.4中的P3所示。

在图3.4中没有任何一个server能够看到3号提议,所以在图3.5中当server 1恢复时他需要在系统恢复时丢弃三号提议P3。

          如果Server1 恢复之后再次成为了Leader,此时再次将P3在P10000001和P10000002之后deliver,那么将违背顺序性的保障。

(4) 保证的实现

      如果Leader选举协议保证了新Leader在Quorum Server中具有最高的提议编号,即Zxid最高。那么新选举出来的leader将具有所有已deliver的消息。新选举出来的Leader,在提出一个新消息之前,首先要保证事务日志中的所有消息都由Quorum Follower已Propose并deliver。需要注意的是,我们可以让新Leader成为一个用最高zxid来处理事务的server,来作为一个优化。这样,作为新被选举出来的Leader,就不必去从一组Followers中找出包含最高zxid的Followers和获取丢失的事务。

① 第一条 

      所有的正确启动的Servers,将会成为Leader或者跟随一个Leader。Leader能够确保它的Followers看到所有的提议,并deliver所有已经deliver的消息。通过将新连接上的Follower所没有见过的所有PROPOSAL进行排队,并之后对该Proposals的COMMIT消息进行排队,直到最后一个COMMIT消息。在所有这样的消息已经排好队之后,Leader将会把Follower加入到广播列表,以便今后的提议和确认。这一条是为了保证一致性,因为如果一条消息P已经在旧Leader-Server1中deliver了,即使它刚刚将消息P deliver之后就挂了,但是当旧Leader-Server1重启恢复之后,我们的Client就可以从该Server中看到该消息P deliver的事务,所以为了保证每一个client都能看到一个一致性的视图,我们需要将该消息在每个Server上deliver。

② 第二条

       skip已经Propose,但不能deliver的消息,处理起来也比较简单。在我们的实现中,Zxid是由64位数字组成的,低32位用作简单计数器。高32位是一个epoch。每当新Leader接管它时,将获取日志中Zxid最大的epoch,新Leader Zxid的epoch位设置为epoch+1,counter位设置0。用epoch来标记领导关系的改变,并要求Quorum Servers 通过epoch来识别该leader,避免了多个Leader用同一个Zxid发布不同的提议。

      这个方案的一个优点就是,我们可以skip一个失败的领导者的实例,从而加速并简化了恢复过程。如果一台宕机的Server重启,并带有未发布的Proposal,那么先前的未发布的所有提议将永不会被deliver。并且它不能够成为一个新leader,因为任何一种可能的 Quorum Servers ,都会有一个Server其Proposal 来自与一个新epoch因此它具有一个较高的zxid。当Server以Follower的身份连接,领导者检查自身最后提交的提议,该提议的epoch 为Follower的最新提议的epoch(也就是图3.5中新Leader-Server2中deliver的C2提议),并告诉Follower截断事务日志直到该epoch在新Leader中deliver的最后的Proposal即C2。在图3.5中,当旧Leader-Server1连接到了新leader-Server2,leader将告诉他从事务日志中清除3号提议P3,具体点就是清除P2之后的所有提议,因为P2之后的所有提议只有旧Leader-Server1知道,其他Server不知道。

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章