ArrayList 源碼閱讀

class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable

 因爲數組比較重要,源碼也好閱讀,就找幾個常用的記錄一下,用到的或者自己理解能力上來後,慢慢的在深度閱讀源碼

1、數組默認的長度 

java jdk 1.8  

private static final int DEFAULT_CAPACITY = 10;

ArrayList 默認的長度爲 10

2、ArrayList的有參構造,進行實例化數組容量

    public ArrayList(int initialCapacity) {
        if (initialCapacity > 0) {
            this.elementData = new Object[initialCapacity];
        } else if (initialCapacity == 0) {
            this.elementData = EMPTY_ELEMENTDATA;
        } else {
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        }
    }

 3、數組的toArray操作

    public <T> T[] toArray(T[] a) {
        if (a.length < size)
            // Make a new array of a's runtime type, but my contents:
            return (T[]) Arrays.copyOf(elementData, size, a.getClass());
        System.arraycopy(elementData, 0, a, 0, size);
        if (a.length > size)
            a[size] = null;
        return a;
    }

其中的arrayCopy 調用了native的方法,實現了元素的拷貝

    public static native void arraycopy(Object src,  int  srcPos,
                                        Object dest, int destPos,
                                        int length);

4、set方法,替換特定位置的元素

    public E set(int index, E element) {
        rangeCheck(index);

        E oldValue = elementData(index);
        elementData[index] = element;
        return oldValue;
    }

首先進行數組長度的判斷,避免數組越界,所以在foreach或者for循環,進行remove操作,影響了原有的數組長度,就會數組越界

5、add方法:add方法比較特殊,涉及自動擴容,一般浮動默認容量的一半

    public boolean add(E e) {
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        elementData[size++] = e;
        return true;
    }

注意此處的modCount ,事實上線程安全本身就不允許讀的時候被修改,

    private void ensureCapacityInternal(int minCapacity) {
        if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
            minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
        }

        ensureExplicitCapacity(minCapacity);
    }

    private void ensureExplicitCapacity(int minCapacity) {
        modCount++;

        // overflow-conscious code
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }

擴容操作:

如果add操作的下標不超過原集合長度的一半,不進行擴容;如果下標過大,會擴容值整型的最大值(詳見源碼)

    /**
     * Increases the capacity to ensure that it can hold at least the
     * number of elements specified by the minimum capacity argument.
     *
     * @param minCapacity the desired minimum capacity
     */
    private void grow(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = elementData.length;
        int newCapacity = oldCapacity + (oldCapacity >> 1);
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        // minCapacity is usually close to size, so this is a win:
        elementData = Arrays.copyOf(elementData, newCapacity);
    }
    private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?
            Integer.MAX_VALUE :
            MAX_ARRAY_SIZE;
    }

6、add (index, element) 操作

    public void add(int index, E element) {
        rangeCheckForAdd(index);

        ensureCapacityInternal(size + 1);  // Increments modCount!!
        System.arraycopy(elementData, index, elementData, index + 1,
                         size - index);
        elementData[index] = element;
        size++;
    }

這個方法和add(e)還不同,如果數組下標超過當前的集合下標,不會自動擴容,而是提示越界

    /**
     * A version of rangeCheck used by add and addAll.
     */
    private void rangeCheckForAdd(int index) {
        if (index > size || index < 0)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

然後實現替換原有屬性的操作,

 

7、remove(index)刪除操作,此處調用了GC操作

    public E remove(int index) {
        rangeCheck(index);

        modCount++;
        E oldValue = elementData(index);

        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // clear to let GC do its work

        return oldValue;
    }

8、remove(Element)操作:底層的fastRemove也是循環遍歷當前元素的下表,然後調用remove(index)刪除操作

    public boolean remove(Object o) {
        if (o == null) {
            for (int index = 0; index < size; index++)
                if (elementData[index] == null) {
                    fastRemove(index);
                    return true;
                }
        } else {
            for (int index = 0; index < size; index++)
                if (o.equals(elementData[index])) {
                    fastRemove(index);
                    return true;
                }
        }
        return false;
    }

9、clear操作:實現數組的清理操作,全部置爲null

    public void clear() {
        modCount++;

        // clear to let GC do its work
        for (int i = 0; i < size; i++)
            elementData[i] = null;

        size = 0;
    }

10.addAll() 也是用到了擴容操作

    public boolean addAll(Collection<? extends E> c) {
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount
        System.arraycopy(a, 0, elementData, size, numNew);
        size += numNew;
        return numNew != 0;
    }

11、forEach方法

    @Override
    public void forEach(Consumer<? super E> action) {
        Objects.requireNonNull(action);
        final int expectedModCount = modCount;
        @SuppressWarnings("unchecked")
        final E[] elementData = (E[]) this.elementData;
        final int size = this.size;
        for (int i=0; modCount == expectedModCount && i < size; i++) {
            action.accept(elementData[i]);
        }
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
    }

12、sort操作

    @Override
    @SuppressWarnings("unchecked")
    public void sort(Comparator<? super E> c) {
        final int expectedModCount = modCount;
        Arrays.sort((E[]) elementData, 0, size, c);
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }
    public static <T> void sort(T[] a, int fromIndex, int toIndex,
                                Comparator<? super T> c) {
        if (c == null) {
            sort(a, fromIndex, toIndex);
        } else {
            rangeCheck(a.length, fromIndex, toIndex);
            if (LegacyMergeSort.userRequested)
                legacyMergeSort(a, fromIndex, toIndex, c);
            else
                TimSort.sort(a, fromIndex, toIndex, c, null, 0, 0);
        }
    }

用到的這個並麼有讀懂,說以前的是用comparator進行的比較,然後用了系統的拷貝,不能使用靜態的boolean在循環依賴中,在以後的版本將會被淘汰 

    /**
     * Old merge sort implementation can be selected (for
     * compatibility with broken comparators) using a system property.
     * Cannot be a static boolean in the enclosing class due to
     * circular dependencies. To be removed in a future release.
     */
    static final class LegacyMergeSort {
        private static final boolean userRequested =
            java.security.AccessController.doPrivileged(
                new sun.security.action.GetBooleanAction(
                    "java.util.Arrays.useLegacyMergeSort")).booleanValue();
    }

sort底層用了comparable的比較,然後使用swap進行交換位置

    private static void mergeSort(Object[] src,
                                  Object[] dest,
                                  int low,
                                  int high,
                                  int off) {
        int length = high - low;

        // Insertion sort on smallest arrays
        if (length < INSERTIONSORT_THRESHOLD) {
            for (int i=low; i<high; i++)
                for (int j=i; j>low &&
                         ((Comparable) dest[j-1]).compareTo(dest[j])>0; j--)
                    swap(dest, j, j-1);
            return;
        }

        // Recursively sort halves of dest into src
        int destLow  = low;
        int destHigh = high;
        low  += off;
        high += off;
        int mid = (low + high) >>> 1;
        mergeSort(dest, src, low, mid, -off);
        mergeSort(dest, src, mid, high, -off);

        // If list is already sorted, just copy from src to dest.  This is an
        // optimization that results in faster sorts for nearly ordered lists.
        if (((Comparable)src[mid-1]).compareTo(src[mid]) <= 0) {
            System.arraycopy(src, low, dest, destLow, length);
            return;
        }

        // Merge sorted halves (now in src) into dest
        for(int i = destLow, p = low, q = mid; i < destHigh; i++) {
            if (q >= high || p < mid && ((Comparable)src[p]).compareTo(src[q])<=0)
                dest[i] = src[p++];
            else
                dest[i] = src[q++];
        }
    }

此處的不同分支,在jdk1.8之後用了二分法,這個方法比較好,以後可能會用這個方法

    private static <T> void binarySort(T[] a, int lo, int hi, int start,
                                       Comparator<? super T> c) {
        assert lo <= start && start <= hi;
        if (start == lo)
            start++;
        for ( ; start < hi; start++) {
            T pivot = a[start];

            // Set left (and right) to the index where a[start] (pivot) belongs
            int left = lo;
            int right = start;
            assert left <= right;
            /*
             * Invariants:
             *   pivot >= all in [lo, left).
             *   pivot <  all in [right, start).
             */
            while (left < right) {
                int mid = (left + right) >>> 1;
                if (c.compare(pivot, a[mid]) < 0)
                    right = mid;
                else
                    left = mid + 1;
            }
            assert left == right;

            /*
             * The invariants still hold: pivot >= all in [lo, left) and
             * pivot < all in [left, start), so pivot belongs at left.  Note
             * that if there are elements equal to pivot, left points to the
             * first slot after them -- that's why this sort is stable.
             * Slide elements over to make room for pivot.
             */
            int n = start - left;  // The number of elements to move
            // Switch is just an optimization for arraycopy in default case
            switch (n) {
                case 2:  a[left + 2] = a[left + 1];
                case 1:  a[left + 1] = a[left];
                         break;
                default: System.arraycopy(a, left, a, left + 1, n);
            }
            a[left] = pivot;
        }
    }

13、modCount 解釋

在ArrayList的所有涉及結構變化的方法中都增加modCount的值,包括:add()、remove()、addAll()、removeRange()及clear()方法。這些方法每調用一次,modCount的值就加1。

這位仁兄講的可以 https://blog.csdn.net/qq_24235325/article/details/52450331

https://blog.csdn.net/qq_35275233/article/details/104864063

使用modCount和expectModCount 主要還是避免同時add或者set造成的併發衝突,但是modCount沒有用volatile修改,所以多線程不可見,fail-fast不能保證一定成功

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章