Canny邊緣檢測算法(Canny edge detector)

Canny邊緣檢測算子是澳洲計算機科學家約翰·坎尼(John F. Canny)於1986年開發出來的一個多級邊緣檢測算法。

算法步驟

1. 降噪

任何邊緣檢測算法都不可能在未經處理的原始數據上很好地處理,所以第一步是對原始數據與高斯平滑模板作卷積,得到的圖像與原始圖像相比有些輕微的模糊(blurred)。這樣,單獨的一個像素噪聲在經過高斯平滑的圖像上變得幾乎沒有影響。

2. 尋找圖像中的亮度梯度

圖像中的邊緣可能會指向不同的方向,所以Canny算法使用4個mask檢測水平、垂直以及對角線方向的邊緣。原始圖像與每個mask所作的卷積都存儲起來。對於每個點我們都標識在這個點上的最大值以及生成的邊緣的方向。這樣我們就從原始圖像生成了圖像中每個點亮度梯度圖以及亮度梯度的方向。

3. 在圖像中跟蹤邊緣

較高的亮度梯度比較有可能是邊緣,但是沒有一個確切的值來限定多大的亮度梯度是邊緣多大又不是,所以Canny使用了滯後閾值。

滯後閾值需要兩個閾值——高閾值與低閾值。假設圖像中的重要邊緣都是連續的曲線,這樣我們就可以跟蹤給定曲線中模糊的部分,並且避免將沒有組成曲線的噪聲像素當成邊緣。所以我們從一個較大的閾值開始,這將標識出我們比較確信的真實邊緣,使用前面導出的方向信息,我們從這些真正的邊緣開始在圖像中跟蹤整個的邊緣。在跟蹤的時候,我們使用一個較小的閾值,這樣就可以跟蹤曲線的模糊部分直到我們回到起點。

一旦這個過程完成,我們就得到了一個二值圖像,每點表示是否是一個邊緣點。

一個獲得亞像素精度邊緣的改進實現是在梯度方向檢測二階方向導數的過零點
在這裏插入圖片描述
它在梯度方向的三階方向導數滿足符號條件
在這裏插入圖片描述
其中Lx,Ly,··· ,Lyyy表示用高斯核平滑原始圖像得到的尺度空間表示{\displaystyle L}L計算得到的偏導數。用這種方法得到的邊緣片斷是連續曲線,這樣就不需要另外的邊緣跟蹤改進。滯後閾值也可以用於亞像素邊緣檢測。

代碼實現

C

該程序讀取每像素8bit的灰度BMP文件,並將結果保存到`out.bmp’。用-lm編譯。

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>
#include <string.h>
#include <stdbool.h>
#include <assert.h>
 
#define MAX_BRIGHTNESS 255
 
// C99 doesn't define M_PI (GNU-C99 does)
#define M_PI 3.14159265358979323846264338327
 
/*
 * Loading part taken from
 * http://www.vbforums.com/showthread.php?t=261522
 * BMP info:
 * http://en.wikipedia.org/wiki/BMP_file_format
 *
 * Note: the magic number has been removed from the bmpfile_header_t
 * structure since it causes alignment problems
 *     bmpfile_magic_t should be written/read first
 * followed by the
 *     bmpfile_header_t
 * [this avoids compiler-specific alignment pragmas etc.]
 */
 
typedef struct {
    uint8_t magic[2];
} bmpfile_magic_t;
 
typedef struct {
    uint32_t filesz;
    uint16_t creator1;
    uint16_t creator2;
    uint32_t bmp_offset;
} bmpfile_header_t;
 
typedef struct {
    uint32_t header_sz;
    int32_t  width;
    int32_t  height;
    uint16_t nplanes;
    uint16_t bitspp;
    uint32_t compress_type;
    uint32_t bmp_bytesz;
    int32_t  hres;
    int32_t  vres;
    uint32_t ncolors;
    uint32_t nimpcolors;
} bitmap_info_header_t;
 
typedef struct {
    uint8_t r;
    uint8_t g;
    uint8_t b;
    uint8_t nothing;
} rgb_t;
 
// Use short int instead `unsigned char' so that we can
// store negative values.
typedef short int pixel_t;
 
pixel_t *load_bmp(const char *filename,
                  bitmap_info_header_t *bitmapInfoHeader)
{
    FILE *filePtr = fopen(filename, "rb");
    if (filePtr == NULL) {
        perror("fopen()");
        return NULL;
    }
 
    bmpfile_magic_t mag;
    if (fread(&mag, sizeof(bmpfile_magic_t), 1, filePtr) != 1) {
        fclose(filePtr);
        return NULL;
    }
 
    // verify that this is a bmp file by check bitmap id
    // warning: dereferencing type-punned pointer will break
    // strict-aliasing rules [-Wstrict-aliasing]
    if (*((uint16_t*)mag.magic) != 0x4D42) {
        fprintf(stderr, "Not a BMP file: magic=%c%c\n",
                mag.magic[0], mag.magic[1]);
        fclose(filePtr);
        return NULL;
    }
 
    bmpfile_header_t bitmapFileHeader; // our bitmap file header
    // read the bitmap file header
    if (fread(&bitmapFileHeader, sizeof(bmpfile_header_t),
              1, filePtr) != 1) {
        fclose(filePtr);
        return NULL;
    }
 
    // read the bitmap info header
    if (fread(bitmapInfoHeader, sizeof(bitmap_info_header_t),
              1, filePtr) != 1) {
        fclose(filePtr);
        return NULL;
    }
 
    if (bitmapInfoHeader->compress_type != 0)
        fprintf(stderr, "Warning, compression is not supported.\n");
 
    // move file point to the beginning of bitmap data
    if (fseek(filePtr, bitmapFileHeader.bmp_offset, SEEK_SET)) {
        fclose(filePtr);
        return NULL;
    }
 
    // allocate enough memory for the bitmap image data
    pixel_t *bitmapImage = malloc(bitmapInfoHeader->bmp_bytesz *
                                  sizeof(pixel_t));
 
    // verify memory allocation
    if (bitmapImage == NULL) {
        fclose(filePtr);
        return NULL;
    }
 
    // read in the bitmap image data
    size_t pad, count=0;
    unsigned char c;
    pad = 4*ceil(bitmapInfoHeader->bitspp*bitmapInfoHeader->width/32.) - bitmapInfoHeader->width;
    for(size_t i=0; i<bitmapInfoHeader->height; i++){
	    for(size_t j=0; j<bitmapInfoHeader->width; j++){
		    if (fread(&c, sizeof(unsigned char), 1, filePtr) != 1) {
			    fclose(filePtr);
			    return NULL;
		    }
		    bitmapImage[count++] = (pixel_t) c;
	    }
	    fseek(filePtr, pad, SEEK_CUR);
    }
 
    // If we were using unsigned char as pixel_t, then:
    // fread(bitmapImage, 1, bitmapInfoHeader->bmp_bytesz, filePtr);
 
    // close file and return bitmap image data
    fclose(filePtr);
    return bitmapImage;
}
 
// Return: true on error.
bool save_bmp(const char *filename, const bitmap_info_header_t *bmp_ih,
              const pixel_t *data)
{
    FILE* filePtr = fopen(filename, "wb");
    if (filePtr == NULL)
        return true;
 
    bmpfile_magic_t mag = {{0x42, 0x4d}};
    if (fwrite(&mag, sizeof(bmpfile_magic_t), 1, filePtr) != 1) {
        fclose(filePtr);
        return true;
    }
 
    const uint32_t offset = sizeof(bmpfile_magic_t) +
                            sizeof(bmpfile_header_t) +
                            sizeof(bitmap_info_header_t) +
                            ((1U << bmp_ih->bitspp) * 4);
 
    const bmpfile_header_t bmp_fh = {
        .filesz = offset + bmp_ih->bmp_bytesz,
        .creator1 = 0,
        .creator2 = 0,
        .bmp_offset = offset
    };
 
    if (fwrite(&bmp_fh, sizeof(bmpfile_header_t), 1, filePtr) != 1) {
        fclose(filePtr);
        return true;
    }
    if (fwrite(bmp_ih, sizeof(bitmap_info_header_t), 1, filePtr) != 1) {
        fclose(filePtr);
        return true;
    }
 
    // Palette
    for (size_t i = 0; i < (1U << bmp_ih->bitspp); i++) {
        const rgb_t color = {(uint8_t)i, (uint8_t)i, (uint8_t)i};
        if (fwrite(&color, sizeof(rgb_t), 1, filePtr) != 1) {
            fclose(filePtr);
            return true;
        }
    }
 
    // We use int instead of uchar, so we can't write img
    // in 1 call any more.
    // fwrite(data, 1, bmp_ih->bmp_bytesz, filePtr);
 
    // Padding: http://en.wikipedia.org/wiki/BMP_file_format#Pixel_storage
    size_t pad = 4*ceil(bmp_ih->bitspp*bmp_ih->width/32.) - bmp_ih->width;
    unsigned char c;
    for(size_t i=0; i < bmp_ih->height; i++) {
	    for(size_t j=0; j < bmp_ih->width; j++) {
		    c = (unsigned char) data[j + bmp_ih->width*i];
		    if (fwrite(&c, sizeof(char), 1, filePtr) != 1) {
			    fclose(filePtr);
			    return true;
		    }
	    }
	    c = 0;
	    for(size_t j=0; j<pad; j++)
		    if (fwrite(&c, sizeof(char), 1, filePtr) != 1) {
			    fclose(filePtr);
			    return true;
		    }
    }
 
    fclose(filePtr);
    return false;
}
 
// if normalize is true, map pixels to range 0..MAX_BRIGHTNESS
void convolution(const pixel_t *in, pixel_t *out, const float *kernel,
                 const int nx, const int ny, const int kn,
                 const bool normalize)
{
    assert(kn % 2 == 1);
    assert(nx > kn && ny > kn);
    const int khalf = kn / 2;
    float min = FLT_MAX, max = -FLT_MAX;
 
    if (normalize)
        for (int m = khalf; m < nx - khalf; m++)
            for (int n = khalf; n < ny - khalf; n++) {
                float pixel = 0.0;
                size_t c = 0;
                for (int j = -khalf; j <= khalf; j++)
                    for (int i = -khalf; i <= khalf; i++) {
                        pixel += in[(n - j) * nx + m - i] * kernel[c];
                        c++;
                    }
                if (pixel < min)
                    min = pixel;
                if (pixel > max)
                    max = pixel;
                }
 
    for (int m = khalf; m < nx - khalf; m++)
        for (int n = khalf; n < ny - khalf; n++) {
            float pixel = 0.0;
            size_t c = 0;
            for (int j = -khalf; j <= khalf; j++)
                for (int i = -khalf; i <= khalf; i++) {
                    pixel += in[(n - j) * nx + m - i] * kernel[c];
                    c++;
                }
 
            if (normalize)
                pixel = MAX_BRIGHTNESS * (pixel - min) / (max - min);
            out[n * nx + m] = (pixel_t)pixel;
        }
}
 
/*
 * gaussianFilter:
 * http://www.songho.ca/dsp/cannyedge/cannyedge.html
 * determine size of kernel (odd #)
 * 0.0 <= sigma < 0.5 : 3
 * 0.5 <= sigma < 1.0 : 5
 * 1.0 <= sigma < 1.5 : 7
 * 1.5 <= sigma < 2.0 : 9
 * 2.0 <= sigma < 2.5 : 11
 * 2.5 <= sigma < 3.0 : 13 ...
 * kernelSize = 2 * int(2*sigma) + 3;
 */
void gaussian_filter(const pixel_t *in, pixel_t *out,
                     const int nx, const int ny, const float sigma)
{
    const int n = 2 * (int)(2 * sigma) + 3;
    const float mean = (float)floor(n / 2.0);
    float kernel[n * n]; // variable length array
 
    fprintf(stderr, "gaussian_filter: kernel size %d, sigma=%g\n",
            n, sigma);
    size_t c = 0;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++) {
            kernel[c] = exp(-0.5 * (pow((i - mean) / sigma, 2.0) +
                                    pow((j - mean) / sigma, 2.0)))
                        / (2 * M_PI * sigma * sigma);
            c++;
        }
 
    convolution(in, out, kernel, nx, ny, n, true);
}
 
/*
 * Links:
 * http://en.wikipedia.org/wiki/Canny_edge_detector
 * http://www.tomgibara.com/computer-vision/CannyEdgeDetector.java
 * http://fourier.eng.hmc.edu/e161/lectures/canny/node1.html
 * http://www.songho.ca/dsp/cannyedge/cannyedge.html
 *
 * Note: T1 and T2 are lower and upper thresholds.
 */
pixel_t *canny_edge_detection(const pixel_t *in,
                              const bitmap_info_header_t *bmp_ih,
                              const int tmin, const int tmax,
                              const float sigma)
{
    const int nx = bmp_ih->width;
    const int ny = bmp_ih->height;
 
    pixel_t *G = calloc(nx * ny * sizeof(pixel_t), 1);
    pixel_t *after_Gx = calloc(nx * ny * sizeof(pixel_t), 1);
    pixel_t *after_Gy = calloc(nx * ny * sizeof(pixel_t), 1);
    pixel_t *nms = calloc(nx * ny * sizeof(pixel_t), 1);
    pixel_t *out = malloc(bmp_ih->bmp_bytesz * sizeof(pixel_t));
 
    if (G == NULL || after_Gx == NULL || after_Gy == NULL ||
        nms == NULL || out == NULL) {
        fprintf(stderr, "canny_edge_detection:"
                " Failed memory allocation(s).\n");
        exit(1);
    }
 
    gaussian_filter(in, out, nx, ny, sigma);
 
    const float Gx[] = {-1, 0, 1,
                        -2, 0, 2,
                        -1, 0, 1};
 
    convolution(out, after_Gx, Gx, nx, ny, 3, false);
 
    const float Gy[] = { 1, 2, 1,
                         0, 0, 0,
                        -1,-2,-1};
 
    convolution(out, after_Gy, Gy, nx, ny, 3, false);
 
    for (int i = 1; i < nx - 1; i++)
        for (int j = 1; j < ny - 1; j++) {
            const int c = i + nx * j;
            // G[c] = abs(after_Gx[c]) + abs(after_Gy[c]);
            G[c] = (pixel_t)hypot(after_Gx[c], after_Gy[c]);
        }
 
    // Non-maximum suppression, straightforward implementation.
    for (int i = 1; i < nx - 1; i++)
        for (int j = 1; j < ny - 1; j++) {
            const int c = i + nx * j;
            const int nn = c - nx;
            const int ss = c + nx;
            const int ww = c + 1;
            const int ee = c - 1;
            const int nw = nn + 1;
            const int ne = nn - 1;
            const int sw = ss + 1;
            const int se = ss - 1;
 
            const float dir = (float)(fmod(atan2(after_Gy[c],
                                                 after_Gx[c]) + M_PI,
                                           M_PI) / M_PI) * 8;
 
            if (((dir <= 1 || dir > 7) && G[c] > G[ee] &&
                 G[c] > G[ww]) || // 0 deg
                ((dir > 1 && dir <= 3) && G[c] > G[nw] &&
                 G[c] > G[se]) || // 45 deg
                ((dir > 3 && dir <= 5) && G[c] > G[nn] &&
                 G[c] > G[ss]) || // 90 deg
                ((dir > 5 && dir <= 7) && G[c] > G[ne] &&
                 G[c] > G[sw]))   // 135 deg
                nms[c] = G[c];
            else
                nms[c] = 0;
        }
 
    // Reuse array
    // used as a stack. nx*ny/2 elements should be enough.
    int *edges = (int*) after_Gy;
    memset(out, 0, sizeof(pixel_t) * nx * ny);
    memset(edges, 0, sizeof(pixel_t) * nx * ny);
 
    // Tracing edges with hysteresis . Non-recursive implementation.
    size_t c = 1;
    for (int j = 1; j < ny - 1; j++)
        for (int i = 1; i < nx - 1; i++) {
            if (nms[c] >= tmax && out[c] == 0) { // trace edges
                out[c] = MAX_BRIGHTNESS;
                int nedges = 1;
                edges[0] = c;
 
                do {
                    nedges--;
                    const int t = edges[nedges];
 
                    int nbs[8]; // neighbours
                    nbs[0] = t - nx;     // nn
                    nbs[1] = t + nx;     // ss
                    nbs[2] = t + 1;      // ww
                    nbs[3] = t - 1;      // ee
                    nbs[4] = nbs[0] + 1; // nw
                    nbs[5] = nbs[0] - 1; // ne
                    nbs[6] = nbs[1] + 1; // sw
                    nbs[7] = nbs[1] - 1; // se
 
                    for (int k = 0; k < 8; k++)
                        if (nms[nbs[k]] >= tmin && out[nbs[k]] == 0) {
                            out[nbs[k]] = MAX_BRIGHTNESS;
                            edges[nedges] = nbs[k];
                            nedges++;
                        }
                } while (nedges > 0);
            }
            c++;
        }
 
    free(after_Gx);
    free(after_Gy);
    free(G);
    free(nms);
 
    return out;
}
 
int main(const int argc, const char ** const argv)
{
    if (argc < 2) {
        printf("Usage: %s image.bmp\n", argv[0]);
        return 1;
    }
 
    static bitmap_info_header_t ih;
    const pixel_t *in_bitmap_data = load_bmp(argv[1], &ih);
    if (in_bitmap_data == NULL) {
        fprintf(stderr, "main: BMP image not loaded.\n");
        return 1;
    }
 
    printf("Info: %d x %d x %d\n", ih.width, ih.height, ih.bitspp);
 
    const pixel_t *out_bitmap_data =
        canny_edge_detection(in_bitmap_data, &ih, 45, 50, 1.0f);
    if (out_bitmap_data == NULL) {
        fprintf(stderr, "main: failed canny_edge_detection.\n");
        return 1;
    }
 
    if (save_bmp("out.bmp", &ih, out_bitmap_data)) {
        fprintf(stderr, "main: BMP image not saved.\n");
        return 1;
    }
 
    free((pixel_t*)in_bitmap_data);
    free((pixel_t*)out_bitmap_data);
    return 0;
}

Go

Library:Imger
Imger是一個包含了Go編寫的圖像處理算法集合的庫。

注意,在Linux上,示例圖像文件名的擴展名需要從.PNG更改爲.png,以便庫能夠識別它。

package main
 
import (
    ed "github.com/Ernyoke/Imger/edgedetection"
    "github.com/Ernyoke/Imger/imgio"
    "log"
)
 
func main() {
    img, err := imgio.ImreadRGBA("Valve_original_(1).png")
    if err != nil {
        log.Fatal("Could not read image", err)
    }
 
    cny, err := ed.CannyRGBA(img, 15, 45, 5)
    if err != nil {
        log.Fatal("Could not perform Canny Edge detection")
    }
 
    err = imgio.Imwrite(cny, "Valve_canny_(1).png")
    if err != nil {
        log.Fatal("Could not write Canny image to disk")
    }
}

PHP

// input: r,g,b in range 0..255
function RGBtoHSV($r, $g, $b) {
	$r = $r/255.; // convert to range 0..1
	$g = $g/255.;
	$b = $b/255.;
	$cols = array("r" => $r, "g" => $g, "b" => $b);
	asort($cols, SORT_NUMERIC);
	$min = key(array_slice($cols, 1)); // "r", "g" or "b"
	$max = key(array_slice($cols, -1)); // "r", "g" or "b"
 
	// hue
	if($cols[$min] == $cols[$max]) {
		$h = 0;
	} else {
		if($max == "r") {
			$h = 60. * ( 0 + ( ($cols["g"]-$cols["b"]) / ($cols[$max]-$cols[$min]) ) );
		} elseif ($max == "g") {
			$h = 60. * ( 2 + ( ($cols["b"]-$cols["r"]) / ($cols[$max]-$cols[$min]) ) );
		} elseif ($max == "b") {
			$h = 60. * ( 4 + ( ($cols["r"]-$cols["g"]) / ($cols[$max]-$cols[$min]) ) );
		}
		if($h < 0) {
			$h += 360;
		}
	}
 
	// saturation
	if($cols[$max] == 0) {
		$s = 0;
	} else {
		$s = ( ($cols[$max]-$cols[$min])/$cols[$max] );
		$s = $s * 255;
	}
 
	// lightness
	$v = $cols[$max];
	$v = $v * 255;
 
	return(array($h, $s, $v));
}
 
$filename = "image.png";
$dimensions = getimagesize($filename);
$w = $dimensions[0]; // width
$h = $dimensions[1]; // height
 
$im = imagecreatefrompng($filename);
 
for($hi=0; $hi < $h; $hi++) {
 
	for($wi=0; $wi < $w; $wi++) {
		$rgb = imagecolorat($im, $wi, $hi);
 
		$r = ($rgb >> 16) & 0xFF;
		$g = ($rgb >> 8) & 0xFF;
		$b = $rgb & 0xFF;
		$hsv = RGBtoHSV($r, $g, $b);
 
		// compare pixel below with current pixel
		$brgb = imagecolorat($im, $wi, $hi+1);
		$br = ($brgb >> 16) & 0xFF;
		$bg = ($brgb >> 8) & 0xFF;
		$bb = $brgb & 0xFF;
		$bhsv = RGBtoHSV($br, $bg, $bb);
 
		// if difference in hue > 20, edge is detected
		if($hsv[2]-$bhsv[2] > 20) { 
                    imagesetpixel($im, $wi, $hi, imagecolorallocate($im, 255, 0, 0));
		} 
                else {
		    imagesetpixel($im, $wi, $hi, imagecolorallocate($im, 0, 0, 0));
		}
 
        }
 
}
 
header('Content-Type: image/jpeg');
imagepng($im);
imagedestroy($im);

Python

在Python中,Canny邊緣檢測通常將使用scikit-image或OpenCV-Python進行。這是使用numpy / scipy的方法:

#!/bin/python
import numpy as np
from scipy.ndimage.filters import convolve, gaussian_filter
from scipy.misc import imread, imshow
 
def CannyEdgeDetector(im, blur = 1, highThreshold = 91, lowThreshold = 31):
	im = np.array(im, dtype=float) #Convert to float to prevent clipping values
 
	#Gaussian blur to reduce noise
	im2 = gaussian_filter(im, blur)
 
	#Use sobel filters to get horizontal and vertical gradients
	im3h = convolve(im2,[[-1,0,1],[-2,0,2],[-1,0,1]]) 
	im3v = convolve(im2,[[1,2,1],[0,0,0],[-1,-2,-1]])
 
	#Get gradient and direction
	grad = np.power(np.power(im3h, 2.0) + np.power(im3v, 2.0), 0.5)
	theta = np.arctan2(im3v, im3h)
	thetaQ = (np.round(theta * (5.0 / np.pi)) + 5) % 5 #Quantize direction
 
	#Non-maximum suppression
	gradSup = grad.copy()
	for r in range(im.shape[0]):
		for c in range(im.shape[1]):
			#Suppress pixels at the image edge
			if r == 0 or r == im.shape[0]-1 or c == 0 or c == im.shape[1] - 1:
				gradSup[r, c] = 0
				continue
			tq = thetaQ[r, c] % 4
 
			if tq == 0: #0 is E-W (horizontal)
				if grad[r, c] <= grad[r, c-1] or grad[r, c] <= grad[r, c+1]:
					gradSup[r, c] = 0
			if tq == 1: #1 is NE-SW
				if grad[r, c] <= grad[r-1, c+1] or grad[r, c] <= grad[r+1, c-1]:
					gradSup[r, c] = 0
			if tq == 2: #2 is N-S (vertical)
				if grad[r, c] <= grad[r-1, c] or grad[r, c] <= grad[r+1, c]:
					gradSup[r, c] = 0
			if tq == 3: #3 is NW-SE
				if grad[r, c] <= grad[r-1, c-1] or grad[r, c] <= grad[r+1, c+1]:
					gradSup[r, c] = 0
 
	#Double threshold
	strongEdges = (gradSup > highThreshold)
 
	#Strong has value 2, weak has value 1
	thresholdedEdges = np.array(strongEdges, dtype=np.uint8) + (gradSup > lowThreshold)
 
	#Tracing edges with hysteresis	
	#Find weak edge pixels near strong edge pixels
	finalEdges = strongEdges.copy()
	currentPixels = []
	for r in range(1, im.shape[0]-1):
		for c in range(1, im.shape[1]-1):	
			if thresholdedEdges[r, c] != 1:
				continue #Not a weak pixel
 
			#Get 3x3 patch	
			localPatch = thresholdedEdges[r-1:r+2,c-1:c+2]
			patchMax = localPatch.max()
			if patchMax == 2:
				currentPixels.append((r, c))
				finalEdges[r, c] = 1
 
	#Extend strong edges based on current pixels
	while len(currentPixels) > 0:
		newPix = []
		for r, c in currentPixels:
			for dr in range(-1, 2):
				for dc in range(-1, 2):
					if dr == 0 and dc == 0: continue
					r2 = r+dr
					c2 = c+dc
					if thresholdedEdges[r2, c2] == 1 and finalEdges[r2, c2] == 0:
						#Copy this weak pixel to final result
						newPix.append((r2, c2))
						finalEdges[r2, c2] = 1
		currentPixels = newPix
 
	return finalEdges
 
if __name__=="__main__":
	im = imread("test.jpg", mode="L") #Open image, convert to greyscale
	finalEdges = CannyEdgeDetector(im)
	imshow(finalEdges)
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章